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A B S T R A C T

In this work, a scale analysis is applied over the two-dimensional steady flow of stable-stratified fluid in a lid-
driven square cavity. Scales for the viscous and thermal boundary layers are pursuit, and adjusted with nu-
merical results. The flow parameters investigated covers the range ≤ <Gr10 103 6, ≤ ≤Re100 2500, and

≤ ≤− Pr10 101 2. The outcome of the scale analysis is an expression for the surface-averaged Nusselt number
which is capable of predicting the heat transfer within a 10% error range.

1. Introduction

Usually, mixed convection is referred due to the simultaneous oc-
currence of forced and free convection. However, this classification
does not reflect the truly behavior of the flow, as if forced convection
might be disrupted by buoyancy in a sense of flow restrain. In fact, such
conditions characterize a stable stratified flow that is common in nature
due to the solute or temperature gradients in the ocean and in the at-
mosphere [1].

In this work, it is considered the lid-driven flow inside a square
cavity subjected to a gravitational stable condition where the buoyant-
induced flow does not occur spontaneously. Alternatively, the flow is
established by the movement of the cavity top surface, and buoyancy
acts as a hindrance factor. A criteria for the absence of free convection
depends on the magnitude and orientation of the thermal gradient [2]
which is given as:
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being cp the constant pressure specific heat, g the gravity, p the pres-
sure, T the temperature and V the fluid volume. Therefore, the free
convection occurs whenever the temperature decreases with the in-
creasing of the height and the magnitude of the gradient satisfies the
inequality in Equation (1).

The lid-driven flow works out as a geometrical simplification for a
number of complex nature problems such as in ocean dynamics analysis
[3] and also in meteorological purposes [4]. Moreover, it is an approach
for tackling engineering problems dealing with vapor deposition

processes, green house covering, polymer processing [5], spray and
flash drying, combustion of atomized fuels, cyclone evaporation,
drying, dehydration [6], solar collectors, electronic devices cooling,
lubrication technologies [7], nuclear reactor design [8], metal coating
[9] and also in recirculating flows in the chemicals and food industry
[10].

A fistful of studies for this problem are available considering a wide
spectrum of applications. Initially, the lid-driven flow characteristics
were studied by Ref. [11]. Although the main motivation had been to
accomplish numerical validation of the multigrid method, their results
for an isothermal flow have still been widely employed in numerical
methods for benchmarking. An experiment to reproduce the geometry
of the enclosure and evaluate the validity of flow assumptions such as
two-dimensional and steady flow was built by Ref. [12]. It was ob-
served that for Reynolds number, Re, higher than 3200, the flow ex-
hibits three-dimensional characteristics and a time-dependent oscil-
lating behavior when >Re 6000. More recently, numerical results for
the isothermal flow were produced by a 1024×1024 mesh via the
finite volume method [13]. Also, the flow of shear thinning [14], vis-
coplastic [15,16] and viscoelastic fluids [17] in lid-driven cavities were
studied to describe the flow of molten polymers and food products.

Convection in a lid-driven cavity was empirically investigated by
Ref. [18] as an addendum to their previous works. The influence of the
cavity aspect ratio, the sliding-lid velocity and the thermal gradient
over the heat transport was investigated. It was found that, for the
parameters range considered, the heat transfer is independent of the
cavity height and correlates well with the Grashof number according to
the scale of Gr1/3. The effects of the Prandtl number, Pr , over the
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convection heat transfer in a buoyant-shear-induced flow were nu-
merically studied by Ref. [19]. Such effect over the flow behavior was
more noticeable for predominantly buoyant-induced flows (i.e. Ri-
chardson number higher than unity, >Ri 1). A horizontally-heated
square lid-driven cavity was numerically investigated by Ref. [20]
where the effects of Gr , Re and Pr were accounted.

A gravitational-stable condition was considered upon a cavity with
adiabatic side walls and a sinusoidal velocity at the top surface [21] as
well as a constant velocity [22]. In the latter the numerical results have
shown that an increase in the lid velocity intensifies the flow circulation
and, therefore, enhances heat transfer. Conversely, an increase in
buoyant forces might lead to a diffusive heat transfer regime due to the
fluid stagnation in the cavity lower hemisphere. The stable-stratified
three dimensional flow was numerically simulated by Refs. [1] and
[23]. The mixed convection in a horizontally-heated two-sided-driven
cavity was investigated by Ref. [24] where three boundary conditions
resulting in shear-aided and shear-opposed flow were considered.
Subsequently [25], incorporated the three-dimensional aspects into the
modelling of the two-sided-driven cavity. The time-related character-
istic of the flow were studied by Ref. [6] who solved numerically the
unsteady balance equations. The effects of inclination in a gravitational
stable enclosure were numerically investigated by Ref. [26], whereas
the combined heat and mass transport was studied by Ref. [27].

In fact, the temperature gradient orientation in a lid-driven cavity
under the action of buoyancy acts over the flow noticeably as it was
studied by Refs. [28] and [29]. The influence of the thermal boundary
conditions were investigated by Ref. [5] who solved the balance
equations via Galerkin finite volume method. The problem boundary
conditions varied from a non-uniform heated bottom with cold side
walls to a uniformly heated bottom wall and linearly heated side walls.
The occurrence of Hopf bifurcation upon the simultaneous variations of
Gr and Re was studied by Ref. [30]. The heat transfer in a lid-driven
cavity whose base is subjected to a uniform heat flux were numerically
simulated either for two-dimensional and steady flow [31] and also to
three-dimensional and unsteady flow [32].

Remarkably, none correlation to predict the boundary layer thick-
ness and the surface-averaged Nusselt number Nuav in a lid-driven
square cavity subjected to a gravitational stable condition was found in
literature. Therefore, a phenomenological discussion based on the in-
fluence of buoyancy over the heat transfer is presented here. A scale
analysis is employed to pursuit an analytical correlation for the Nuav as
a function ofGr , Re and Pr . Subsequently, the analytical expressions are
compared with numerical results for the sake of verification. The scale
analysis is a problem-solving method initially formulated by Ref. [33]
and then applied to analyze a variety of problems regarding convection
heat transfer, for instance. Recently, the method was employed to study
the free convection on a vertical surface with time-dependent boundary
conditions [34–36].

2. Mathematical modeling

In the schematic representation displayed in Fig. 1, the cavity top
surface is kept at a constant temperatureTh higher than the temperature
at the bottom Tc. The side walls are adiabatic. A Cartesian coordinate
system is placed at the cavity lower left corner with u and v standing for
the velocity components in x and y-directions, respectively. The cavity
top surface slides with constant velocity UH .

The flow is assumed as steady, laminar, two-dimensional and with
constant properties, which implies Newtonian and incompressible fluid.
Radiative heat transfer is not accounted in the calculations. The con-
servation equations of mass, momentum (x and y-directions) and en-
ergy are:
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where p is the pressure, ρ is the specific mass, υ represents the cine-
matic viscosity, g is the gravity, and β, T and α are, respectively, the
isobaric volume expansion coefficient, the temperature and the thermal
diffusivity. The flow is assumed incompressible and the effects of
buoyancy are accounted in Equation (4) by the Boussinesq-Oberbeck
approximation [37]. According to [38] the employment of such ap-
proximation is possible only for the cases where the influence of tem-
perature and pressure causes a variation of less than 10% in the fluid
properties.

The local heat transfer coefficient h over the cavity bottom surface is
defined as:
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being hav the average heat transfer coefficient, as follow.
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Thus, the local and the surface-averaged Nusselt number are:
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with Nuav regarding analytical results and ∗Nuav numerical ones.
The stream function Ψ is defined as follows.
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Fig. 1. Problem geometry and boundary conditions.
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