Accepted Manuscript

A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis

Li Sun, Yu Tian, Jun Zhang, Lipin Li, Jian Zhang, Jianzheng Li

PII:	\$0960-8524(17)32183-1
DOI:	https://doi.org/10.1016/j.biortech.2017.12.048
Reference:	BITE 19303
To appear in:	Bioresource Technology
Received Date:	17 October 2017
Revised Date:	11 December 2017
Accepted Date:	17 December 2017

Please cite this article as: Sun, L., Tian, Y., Zhang, J., Li, L., Zhang, J., Li, J., A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis, *Bioresource Technology* (2017), doi: https://doi.org/10.1016/j.biortech.2017.12.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae:
2	Performance and microbial community analysis
3	Li Sun ¹ , Yu Tian ^{1,*} , Jun Zhang, Lipin Li ¹ , Jian Zhang ¹ , Jianzheng Li ¹
4	
5	¹ State Key Laboratory of Urban Water Resource and Environment (SKLUWRE),
6	School of Environment, Harbin Institute of Technology, Harbin 150090, China
7	*Corresponding author. Tel: + (86) 451 8628 3077, Fax: + (86) 451 8628 3077, E-mail:
8	hit_tianyu@163.com
9	
10	Abstract
11	This study combined sludge MBR technology with algae to establish an effective
12	wastewater treatment and low membrane fouling system (ASB-MBR). Compared with
13	control-MBR (C-MBR), the amelioration of microbial activity and the improvement of
14	sludge properties and system environment were achieved after introducing algae
15	resulting in high nutrients removal in the combined system. Further statistical analysis
16	revealed that the symbiosis of algae and sludge displayed more remarkable impacts on
17	nutrients removal than either of them. Additionally, membrane permeability was
18	improved in ASB-MBR with respect to the decreased concentration, the changed of
19	characteristics and the broken particular functional groups of extracellular polymeric
20	substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted
21	sludge community structure. Meantime, the stimulated bacteria selectively excite algal
22	members that would benefit for the formation of algal-bacterial consortia. Consequently,
23	the stimulated or inhibited of some species might be responsible for the performance of
24	ASB-MBR.

1

Download English Version:

https://daneshyari.com/en/article/7068483

Download Persian Version:

https://daneshyari.com/article/7068483

Daneshyari.com