Accepted Manuscript

Case Study

Waste to Biodiesel: A Preliminary Assessment for Saudi Arabia

M. Rehan, J. Gardy, A. Demirbas, U. Rashid, W.M. Budzianowski, Deepak Pant, A.S. Nizami

PII: DOI: Reference:	S0960-8524(17)31998-3 https://doi.org/10.1016/j.biortech.2017.11.024 BITE 19174
To appear in:	Bioresource Technology
Received Date: Revised Date: Accepted Date:	28 August 20176 November 20178 November 2017

Please cite this article as: Rehan, M., Gardy, J., Demirbas, A., Rashid, U., Budzianowski, W.M., Pant, D., Nizami, A.S., Waste to Biodiesel: A Preliminary Assessment for Saudi Arabia, *Bioresource Technology* (2017), doi: https://doi.org/10.1016/j.biortech.2017.11.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Waste to Biodiesel: A Preliminary Assessment for Saudi Arabia

M. Rehan¹, J. Gardy², A. Demirbas³, U. Rashid⁴, W.M. Budzianowski^{5,6}, Deepak Pant⁷, A.S. Nizami^{1,*}

¹Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
²School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
³Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
⁴Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
⁵Wojciech Budzianowski Consulting Services, Wrocław, Poland
⁶Renewable Energy and Sustainable Development (RESD) Group, Wrocław, Poland
⁷Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium

Abstract

This study presents a preliminary assessment of biodiesel production from waste sources available in the Kingdom of Saudi Arabia (KSA) for energy generation and solution for waste disposal issues. A case study was developed under three different scenarios: (S1) KSA population only in 2017, (S2) KSA population and pilgrims in 2017, and (S3) KSA population and pilgrims by 2030 using the fat fraction of the municipal solid waste. It was estimated that S1, S2, and S3 scenarios could produce around 1.08, 1.10 and 1.41 million tons of biodiesel with the energy potential of 43423, 43949 and 56493 TJ respectively. Furthermore, annual savings of US \$55.89, 56.56 and 72.71 million can be generated from landfill diversion of food waste and added to the country's economy. However, there are challenges in commercialization of waste to biodiesel facilities in KSA, including waste collection and separation, impurities, reactor design and biodiesel quality.

Keywords: Biodiesel; Waste sources; Fuel; Energy; Transesterification

*Corresponding author- A.S. Nizami, E-mail: nizami_pk@yahoo.com; anizami@kau.edu.sa

Download English Version:

https://daneshyari.com/en/article/7068854

Download Persian Version:

https://daneshyari.com/article/7068854

Daneshyari.com