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a b s t r a c t

In this paper is proposed a control algorithm based on the first order sliding mode technique. The control
design adds an exponential reaching law and a disturbance estimator to improve performance, achieving
a reduction of the convergence time to the reference, as well as a reduction of the reaching time towards
the sliding surface. Also, by compensating the estimated disturbance, it is possible to reduce the
amplitude of the chattering in the control signal. As the control design is intended to be applied in
mechanical systems, a velocity observer design is also proposed. Bringing together the above aspects, the
proposed controller renders an improved performance over the classical first order sliding mode con-
troller. The stability of the closed-loop system is proved using quadratic functions. The performance of
the proposed control structure is illustrated and compared with other controllers via numerical simu-
lations and real-time experiments in a mechanical system.

& 2016 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In many control problems’ applications, there is a discrepancy
between the actual plant and its mathematical representation
used for control design purposes. These discrepancies arise from
uncertainties, external perturbations, non-modeled friction, and
non-well characterized plant parameters. Thus, designing a robust
control algorithm capable of overcoming these discrepancies is a
challenging task, some control techniques have proved to be useful
to this purpose, like sliding mode control, since the main advan-
tages of sliding mode technique are robustness, finite time con-
vergence to the sliding surface, and reduced-order compensated
dynamics [17].

Some previous works containing core ideas about sliding mode
approach, such as the design of an exponential reaching law in
order to reduce the convergence time to the sliding surface, are
listed as follows. In [3], was proposed the reaching law method,
which is complemented by a sliding mode equivalence technique.
In [2,21], was proposed the design of a nonlinear reaching law by
using an exponential function that dynamically adapts to the
variations of the controlled system, and it was applied on multi-
input/multi-output (MIMO) nonlinear systems. More recently, Yu

and Sun [23] addressed a hierarchical sliding mode controller,
based on an exponential reaching law, in order to achieve the
set-point regulation of the longitudinal motion on a pendulum-
driven spherical mobile robot.

In many control applications there is a need of an observer that
converges to the system states in spite of the presence of unknown
signals or uncertainty. This issue is addressed in [22], where is
proposed a sliding-mode control approach for systems with mis-
matched uncertainties via a nonlinear disturbance observer. In
[16] is proposed a control structure for a class of uncertain
Lagrangian systems to solve the regulation and tracking control
problems, the control structure is based on a discontinuous robust
observer with the aid of a low-pass filter to estimate the pertur-
bations affecting the plant. In [19] was proposed a new boundary
layer sliding mode control design for chatter reduction using an
uncertainty and disturbance estimator (UDE). In [4] a state and
extended disturbance observer (DO) is designed for mismatched
uncertain systems. In [17], sliding mode observers and differ-
entiators are presented in a tutorial level. Concerning to the esti-
mation of perturbations and disturbances, in [6] is designed a
discontinuous disturbance observer to be used in feedback com-
pensation of parameter uncertainties and exogenous disturbances.

Control of mechanical systems considering viscous friction can
be found in [13,14], where are proposed sliding mode controllers,
which include an H1 control on its sliding surface, to reduce
unmatched perturbations on the unactuated link of the
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mechanical system. Moreover, in [12], by using the siliding mode
technique, the regulation problem of a mechanical system with a
position constraint, affected by Coulomb friction and an external
perturbation is addressed. Also, Liu et al. [8] consider the problem
of sliding mode control for a class of uncertain switched systems
with parameter uncertainties and external disturbances.

In the present study is proposed for second order mechanical
systems a sliding mode synthesis procedure including an expo-
nential reaching law, a disturbance estimator, a discontinuous
observer, and their stability proofs considering discontinuous
friction, external perturbations, and non-well modeled para-
meters. The aforementioned synthesis constitutes the main con-
tribution of the present work, which to the best of our knowledge
had never been addressed before as a whole.

The study is organized as follows. The problem statement to
solve the tracking problem in second order mechanical systems
under external perturbations, and uncertainties, is presented in
Section 2. The exponential reaching law and its convergence time
analysis are presented in Section 3. In Section 4, is presented the
velocity observer design along with the stability proof using a
Lyapunov function. Section 5 presents a disturbance estimator
given by a second-order low-pass Butterworth filter. In Section 6 is
designed the control algorithm for the output feedback, and its
stability is analyzed. Section 7 presents in simulation level a per-
formance comparison of the proposed control approach against
sliding mode controllers such as twisting algorithm, super twisting
algorithm, and first order sliding mode control. Moreover,
experiments were performed using a mass–spring–damper sys-
tem using the proposed control approach. Finally, Section 8 pre-
sents some concluding remarks.

2. Problem statement

The aim of this paper is to propose a methodology to improve
the performance of first order sliding mode control to solve the
tracking problem in second order systems via output measure-
ments. The system is considered to be under external perturba-
tions and parametric uncertainties, in which both are considered
bounded.

Consider the second order mechanical system represented by

_x1
_x2

" #
¼

x2
�ax1�bx2� f ðxÞþτþw

" #
ð1Þ

y¼ x1 ð2Þ
where x1, x2AR are the position and velocity of the body,
respectively, and only measurements of x1 are available, a, b are
known positive constants which are different from zero, f(x) is a
non-completely known nonlinear function, τAR is the control
input. To account for discrepancies in the model, a not completely
known non-vanishing perturbation w(t) is considered, which is
upper bounded by a positive constant κ as

supt jwðtÞjrκ: ð3Þ
For system (1) the following controller is proposed

τ¼ ~f ðxÞþu ð4Þ
where ~f ðxÞ ¼ f ðxÞþΔf ðxÞ, and Δf represents the error between f
and ~f , which is considered upper bounded by a positive constant ζ.
For a zero force input τ¼0, and zero disturbance (w¼0), the sys-
tem (1) has the following equilibrium point ðx1 ¼ � f ðxÞ=a; x2 ¼ 0Þ.

If it is desired that the equilibrium point be at the origin in
steady state, then τ must be equal to the nonlinear function f(x);
otherwise if, it τ is a constant τ , the equilibrium point of interest
can be considered as ðx1 ¼ ðτ� f ðxÞÞ=a; x2 ¼ 0Þ.

3. Exponential reaching law

Let xd be the reference trajectory, and let η1 ¼ x1�xd and η2 ¼
x2� _xd be the tracking errors, which are desired to be driven to
zero. The first step in sliding mode control is to choose the
switching surface s; in this case, in terms of the tracking errors.
The typical choice of s, see [18], is

s¼ η2þλη1; 8λ40: ð5Þ
When the sliding surface is reached, the tracking errors η1 and η2
exponentially converge to zero. There are two stages in the sliding
mode approach. The first stage, called reaching stage, is the step in
which the errors η1 and η2 are attracted to the switching surface
s¼0. In the second stage, also known as sliding mode, the error
vector “slides” on the surface until it reaches the equilibrium point
ð0;0Þ.

Having chosen the sliding surface, the next step would be to
design the control law u that will allow the trajectories ðη1;η2Þ to
reach the sliding surface. To do so, the control law should be
designed such that the following sliding condition is met

s � _so0; 8 t: ð6Þ
To satisfy condition (6), _s remains under external perturbations w
and the bounded error Δf as follows:

_s ¼ �β � signðsÞþwþΔf ð7Þ
with β4κþζ 8 t condition (6) can be satisfied. Expression (7) is
also called reaching law. The term w(t) is a non-vanishing per-
turbation satisfying (3). It can be proved that the system trajec-
tories reach the surface s¼0, in finite time, using the following
quadratic function:

VðsÞ ¼ s2 ð8Þ
and time-differentiating it along (6) to obtain

_V ðsÞr�2 β�ðκþζÞ� �j sj ¼ �2 β�ðκþζÞ� � ffiffiffiffiffiffiffiffiffi
VðsÞ

p
: ð9Þ

Integrating with respect to time the previous equation, and noting
that V ðtÞ ¼ 0, for tZtr , one has that

t0þ
ffiffiffiffiffiffiffiffiffiffiffi
Vðt0Þ

p
β�ðκþζÞ ¼ tr : ð10Þ

Hence, V(t) converges to zero in finite time and, in consequence, a
motion along the manifold s¼0 occurs. Note that the reaching
time can be reduced by increasing the value of β.

Now, consider the following exponential reaching law (see
[3,23]) which is affected as well by perturbations and uncertainties

_s ¼ � β
NðsÞ � signðsÞþwþΔf ð11Þ

where

NðsÞ ¼ δ0þð1�δ0Þe�αj sj p 40; 8 t ð12Þ
the constants 0oδ0o1, p40 and α40. Due to N(s) is always strictly
positive, the exponential reaching law given by (11) does not affect the
stability of the reduced order system. From the exponential sliding
surface stated in (11), one can see that if j sj increases, N(s) approaches
δ0, and therefore, β=NðsÞ converges to β=δ0, which is greater than β.
This means that β=NðsÞ increases as j sj increases, and consequently,
the convergence rate to s¼0 will be faster. On the other hand, if j sj
decreases, then N(s) approaches one, and β=NðsÞ converges to β. This
means that, when the systems’ trajectories approach to the reference,
β=NðsÞ gradually decreases in order to reduce the control effort. By this
way, the exponential reaching law allows the controller to dynamically
adapt to the variations of s by letting β=NðsÞ to vary between β and
β=δ0. If δ0 is chosen to be equal one, the reaching law (11) becomes
identical to the conventional reaching law _s ¼ �β � signðsÞþwþΔf .
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