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a b s t r a c t

The aim of the paper is to study the impact of component failures on an important control problem for
an automated systemwhen operating: the disturbance rejection. The paper proposes a method based on
a graph–theoretical approach to study the reliability and the availability of the controller capacity to
reject some external disturbances. Only the system structure is considered known. The paper focuses on
external and internal component failures and assumes that their probabilities are known. The
satisfaction conditions of the disturbance rejection problem solvability for the structured linear systems
are recalled. The first contribution of the paper is to express this property as a Boolean expression based
on the functioning state of the involved component. A second contribution is to extend the definition of
the reliability and the availability to cover the disturbance rejection ability and to assess the probability
to conserve or to lose this property according to the components reliability and availability.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In many applications, the disturbance rejection is one of the main
purposes in controlled systems. Indeed, very often, some control
objectives (stabilisation, tracking, etc.) must be satisfied on some
system outputs whatever the external disturbances or faults are. For
instance, the ability of the controlled system to reject the most
important disturbances is of great interest in many automatic control
problems as control law synthesis, fault tolerant control for stabilisa-
tion or desired trajectory tracking and so on. This implies that the
system must satisfy some structural conditions since the design
phase to provide an operational automated system to the customers.

In fact, systems design is a key issue in system engineering. It is
the process of defining the architecture, components, modules,
interfaces and data for a system to satisfy specified requirements
given by the consumer during the functional phase. But, before
this step, the dimensions of the equipment to design are usually
unknown. Working with unknown dimensions can be cumber-
some, but it is possible to work on the basis of generic models
developed from the state equations.

To handle the disturbance rejection problem solvability, many
works [2,18,22] deal with geometric and algebraic formalizations
which necessitate the good and precise knowledge of system state
space models. However, as previously mentioned state equations are
not numerically dimensioned in early phases of the system life-cycle.
Thus, the use of generic representations, called “structured models”,
defined by matrices which contain a fixed number of zero entries
and other entries defined by free parameters determined on the basis
of physical laws is very suitable. Many studies on structured systems
are related to the graph–theoretical approach to analyze some
system properties such as controllability, observability, fault diag-
nosticability, reconfigurability or the solvability of several classical
control problems like disturbance rejection or input–output decou-
pling (see [4,10,16,17] and the references therein). The graph–
theoretical approach provides simple and elegant analysis tools for
these purposes. More precisely, the disturbance rejection problem
has been tackled in [5,21] to establish the conditions of the
disturbance rejection problem solvability. More recently, in [6,9]
the authors classify the different existing sensors according to their
importance for the solvability of such problem or finding where it is
judicious to add sensors in order to recover the ability of the
controlled system to reject the disturbances.

On the other hand, reliability engineers are concerned with the
dependability properties of systems like Reliability, Availability,
Maintainability and Safety (RAMS). In this paper, the reliability and
availability analysis is considered. The reliability of a system
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measures how well it meets its design objectives during a mission
time. It is fundamentally a probabilistic measure. It is expressed as
a function of its components reliability. Thus, the question is to
assess the reliability by defining a function called the “structure
function” [11]. It allows quantifying the RAMS parameters accord-
ingly through the system component probabilities. Availability is
as important as reliability. It measures how well the system meets
its objectives at each instant. Contrary to the reliability, availability
considers restoration of components.

The edges in the system graphical representation are naturally linked
to the internal and internal components of the system. External comp-
onents are sensors and actuators, and internal can be a pipe, a damping,
a pulley, a rolling, etc. according to the kind of the system (hydraulic,
mechanical, etc.). Thus, the validity of system structural properties as the
ability to reject disturbances can be impacted by component failures.
Consequently, it seems clear that the two problems of conceiving
automated reliable and available systems should be considered jointly
and early in the system life-cycle in order to guarantee some confidence
level on those properties by a probability assessment.

There exists many research works which deal with fault-acco-
mmodation and reconfiguration when actuators or sensors are prone
to failures (see [20] for example). But, to our knowledge, there are only
few works that deal with the interaction between automatic control
systems and reliability/availability analysis in our way. In [3], the
authors consider the sensor placement problem by combining a fault
diagnosis observability study by signed directed graphs and reliability
information on component failures probability. [13] also proposes to
solve the sensor placement problem for diagnosis and introduces
reliability and redundancy criterion to enhance the reliability of
measurements. In [8,14], the authors consider the reliability of the
observability and controllability properties of structured linear systems
through a graph theoretical approach.

In this context, the contribution of the proposed paper is first to
define the structural disturbance rejection conditions as a Boolean
expression based on the component functioning states. The second
contribution is to compute the reliability/availability of this
property from the components reliability/availability through the
corresponding structure function. The reliability computation can
be achieved through a Markov chain.

Problem statement: Let us consider the following linear system:

Σ :
_xðtÞ ¼ AxðtÞþBuðtÞþEqðtÞ
yðtÞ ¼ CxðtÞþDuðtÞ

(
ð1Þ

where xARn is the state vector, uARm is the input vector, qARd is
the vector grouping the disturbances, yARp is the output vector i.
e. the output to be controlled, AARn�n, BARn�m, EARn�d, CARp�n

and DARp�m is the feedthrough matrix. The elements of all
these matrices are either fixed to zero or assumed to be nonzero
free parameters noted αi. The set of these parameters is noted
α¼ fα1;α2; …; αhg. If all parameters αi are numerically fixed, we
obtain the so-called admissible realization of structured system Σ.

A structural property is generically satisfied if it is satisfied for
almost all the realizations of the structured system Σ. Here, “for
almost all the realizations” is to be understood as “for all
parameter values (αARh) except for those in some proper alge-
braic variety in the parameter space”.

Solving the disturbance rejection problem consists of the
generic existence of a feedback uðtÞ ¼ FxðtÞ such that the closed
loop system transfer matrix from the disturbance to the output is
equal to zero, i.e. GðsÞ ¼ ðCþDFÞ � ðsI�A�BFÞ�1 � E¼ 0. This pro-
blem is called the disturbance rejection problem by state feedback.

The objective of this paper is to compute the reliability and the
availability of the structural property: disturbance rejection pro-
blem solvability. This represents the originality of the paper since

reliability and availability are usually computed for systems and, to
our knowledge, not for structural properties.

For this purpose, our study is carried into two steps. The first
step of the proposed approach is to provide a Boolean expression
based on the component functioning states which is equal to
“true” when the disturbance rejection problem is solvable under
the technical constraint that the generic rank of the transfer
matrix TðsÞ ¼ CðsI�AÞ�1BþD is equal to the number of outputs
p. This constraint is quite natural in a control context. For all the
reasons cited earlier in this section, we choose a graph–theoretical
approach to address this problem.

The Boolean expression is a key point to compute the probability
of the system ability to conserve the studied property satisfied given
the reliability and availability of each involved component. For this
purpose, Markov chains are used as a tool to compute the availability
of the disturbance rejection problem solvability.

The paper is organized as follows. Section 2 is devoted to some
definitions related to the graph–theoretical approach. The main
results concerning the structural analysis of the disturbance
rejection problem are exposed in Section 3. Reliability/availability
analysis is developed in Section 4. Section 5 is dedicated to a case
study before a brief conclusion.

2. Graphical representation of structured linear systems

2.1. Digraph definition for structured linear systems

Each linear system Σ can be associated to a directed graph
(digraph). This digraph is denoted GðΣÞ and represents the
structure of the system i.e. its variables and their relationships.
Digraph GðΣÞ is constituted by a vertex set V and an edge set E. The
vertices represent the variables of the system: states, control
inputs, disturbances and outputs of Σ, whereas edges in E model
the dynamic relations between these variables. More precisely,
V ¼X [ U [ Y [ Q , where X¼ fx1;…; xng is the set of state ver-
tices, U¼ fu1;…;umg is the set of control input vertices,
Y¼ fy1;…; ypg is the set of output vertices, and Q ¼ fq1;…;qdg is
the set of input disturbance vertices. The edge set is
E ¼ EA [ EB [ EC [ ED [ EE , with EA ¼ fðxj; xiÞjAði; jÞa0g, EB ¼ fðuj;

xiÞjBði; jÞa0g, EC ¼ fðxj; yiÞjCði; jÞa0g, ED ¼ fðuj; yiÞ jDði; jÞa0g and
EE ¼ fðqj; xiÞjEði; jÞa0g.

Example 1. Consider the structured linear system defined by

A¼

0 0 0 α1 0 0 0 0 0 0
α2 0 α3 0 0 0 0 0 0 0
0 α4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 α5 0 0 0 0 0
0 0 0 0 0 α6 0 0 0 α7

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 α8 0 0
0 0 0 0 0 0 0 0 α9 0

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

;

B¼

α10 0 0
0 0 0
0 α11 0
0 0 0
0 0 0
0 α12 0
0 0 α13

0 0 α14

0 0 0
0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; E¼

0 0
α17 0
0 0
α18 0
α19 0
0 0
0 0
0 0
0 α20

0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

;
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