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1. INTRODUCTION

Network design models arise in large applications in
telecommunications, transportation, logistics and produc-
tion planning Balakrishnan et al. (1997, 1991); Minoux
(1989); Gavish (1991). The multicommodity capacitated
fixed-charge network design problem (MCND), is an NP-
hard discrete optimization problem Magnanti and Wong
(1984). It is defined on a directed graph G = (N,A),
where N is the set of nodes and A is the set of arcs. Each
commodity k ∈ K has a demand dk > 0 to be routed from
an origin Ok to a destination Dk. Each arc (i, j), has the
capacity uij > 0 on the flow of all commodities circulating
on the arc, the transportation cost cij ≥ 0 and the fixed
design cost fij ≥ 0. The problem consists of minimizing
the total cost while satisfying the demands and respecting
the capacity constraints. The total cost includes the total
transportation cost for transferring commodities from the
origins to the destinations and the total fixed cost for using
arcs.

Let bkij be equal to min{dk, uij}, N+
i = {j ∈ N |(i, j) ∈ A}

and N−
i = {j ∈ N |(j, i) ∈ A}. Then, the MCND problem

may be modelled as a mixed-integer program (MIP) using
continuous flow variables xk

ij that represent the amount
of flow on each arc (i, j) for each commodity k, and 0-1
design variables yij that indicate if the arc (i, j) is used or
not:

min z = f(x, y) =
∑
k∈K

∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈A

fijyij (1)

∑

j∈N+
i

xk
ij −

∑

j∈N−
i

xk
ji =

{
dk, if i = Ok

0, if i �= Ok, Dk

−dk, if i = Dk

(2)

∑
k∈K

xk
ij ≤ uijyij , ∀(i, j) ∈ A (3)

xk
ij ≤ bkijyij , ∀(i, j) ∈ A, k ∈ K (4)

xk
ij ≥ 0, ∀(i, j) ∈ A, k ∈ K (5)

yij ∈ {0, 1}, ∀(i, j) ∈ A (6)

Equations (2) are the flow conservation constraints for
each node and each commodity. The capacity constraints
(3) ensure that the capacity of each arc is respected.
Additonally, they forbidds any flow to circulate through
an arc that is not chosen as part of the design. The so-
called strong inequalities, (4), ensure the same, therefore,
they are redundant. However, they significantly improve
the linear programming (LP) relaxation bounds (Crainic
et al., 1999). Note that model (1)-(6) represents the strong
formulation of the MCND, while the weak formulation
being obtained by removing constraints (4). Hence, their
corresponding LP relaxations are, respectively, the strong
and the weak relaxations.

For solving this NP hard problem a plenty of exact and
heuristic approaches have been proposed in the literature
up to now. Regarding exact approaches a lot of work
has been dedicated for developing Benders decomposition
methods (Costa et al., 2009, 2012), Lagrangian based pro-
cedures (Crainic et al., 2001, 1999; Holmberg and Yuan,
2000; Frangioni and Gorgone, 2013; Gendron and Crainic,
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Valenciennes Cedex 9, France, (e-mail: racatodosijevic@gmail.com)

Abstract: In this paper we study the Multicommodity Fixed-Charge Network Design problem.
We propose an Iterative linear programming-based heuristic for solving this NP hard problem.
The proposed heuristics have been tested on the benchmark instances from the literature.
The quality of solutions obtained by each of them has been disclosed comparing them with
corresponding solutions of the current state-of-the-art heuristics, i.e., Cycle-Based Evolutionary
algorithms.

Keywords: network design problem; heuristic; pseudo-cut; matheuristic

1. INTRODUCTION

Network design models arise in large applications in
telecommunications, transportation, logistics and produc-
tion planning Balakrishnan et al. (1997, 1991); Minoux
(1989); Gavish (1991). The multicommodity capacitated
fixed-charge network design problem (MCND), is an NP-
hard discrete optimization problem Magnanti and Wong
(1984). It is defined on a directed graph G = (N,A),
where N is the set of nodes and A is the set of arcs. Each
commodity k ∈ K has a demand dk > 0 to be routed from
an origin Ok to a destination Dk. Each arc (i, j), has the
capacity uij > 0 on the flow of all commodities circulating
on the arc, the transportation cost cij ≥ 0 and the fixed
design cost fij ≥ 0. The problem consists of minimizing
the total cost while satisfying the demands and respecting
the capacity constraints. The total cost includes the total
transportation cost for transferring commodities from the
origins to the destinations and the total fixed cost for using
arcs.

Let bkij be equal to min{dk, uij}, N+
i = {j ∈ N |(i, j) ∈ A}

and N−
i = {j ∈ N |(j, i) ∈ A}. Then, the MCND problem

may be modelled as a mixed-integer program (MIP) using
continuous flow variables xk

ij that represent the amount
of flow on each arc (i, j) for each commodity k, and 0-1
design variables yij that indicate if the arc (i, j) is used or
not:

min z = f(x, y) =
∑
k∈K

∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈A

fijyij (1)

∑

j∈N+
i

xk
ij −

∑

j∈N−
i

xk
ji =

{
dk, if i = Ok

0, if i �= Ok, Dk

−dk, if i = Dk

(2)

∑
k∈K

xk
ij ≤ uijyij , ∀(i, j) ∈ A (3)

xk
ij ≤ bkijyij , ∀(i, j) ∈ A, k ∈ K (4)

xk
ij ≥ 0, ∀(i, j) ∈ A, k ∈ K (5)

yij ∈ {0, 1}, ∀(i, j) ∈ A (6)

Equations (2) are the flow conservation constraints for
each node and each commodity. The capacity constraints
(3) ensure that the capacity of each arc is respected.
Additonally, they forbidds any flow to circulate through
an arc that is not chosen as part of the design. The so-
called strong inequalities, (4), ensure the same, therefore,
they are redundant. However, they significantly improve
the linear programming (LP) relaxation bounds (Crainic
et al., 1999). Note that model (1)-(6) represents the strong
formulation of the MCND, while the weak formulation
being obtained by removing constraints (4). Hence, their
corresponding LP relaxations are, respectively, the strong
and the weak relaxations.

For solving this NP hard problem a plenty of exact and
heuristic approaches have been proposed in the literature
up to now. Regarding exact approaches a lot of work
has been dedicated for developing Benders decomposition
methods (Costa et al., 2009, 2012), Lagrangian based pro-
cedures (Crainic et al., 2001, 1999; Holmberg and Yuan,
2000; Frangioni and Gorgone, 2013; Gendron and Crainic,

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 117

An Efficient Matheuristic for the
Multicommodity Fixed-Charge Network

Design Problem
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1994; Kliewer and Timajev, 2005; Sellmann et al., 2002),
branch & price and cutting plane methods (Chouman
et al., 2011; Hewitt et al., 2013; Gendron and Larose,
2014). On the other hand, regarding heuristic approaches
able to produce high quality solutions there are: A slope
scaling/Lagrangean perturbation heuristic (Crainic et al.,
2004), a simplex based tabu search proposed by Crainic
et al. (2000), heuristics that exploit cycle-based neigh-
borhood (Ghamlouche et al., 2003, 2004; Paraskevopoulos
et al., 2013, 2014), scatter search based heuristic (Crainic
and Gendreau, 2007), heuristics that use parallel coopera-
tive strategies (Crainic and Gendreau, 2002; Crainic et al.,
2006); capacity scaling heuristic proposed by (Katayama
et al., 2009); a hybrid approach that combines simulated
annealing and column generation technic (Yaghini et al.,
2012), local branching based heuristic (Rodŕıguez-Mart́ın
and Salazar-González, 2010), hybrid approach that com-
bines large neighborhood search and IP solver (Hewitt
et al., 2010), a matheuristic combining an exact MIP
method and a Tabu search metaheuristic (Chouman and
Crainic, 2010).

In this paper, we propose a matheuristic for solving the
multicommodity capacitated fixed-charge network design
problem. The proposed matheuristic is based on adding
pseudo-cuts in order to exclude portion of solution space
already examined and solving reduced problems deduced
from the initial one.

The rest of the paper is organized as follows. In the next
section, we give an overview of a convergent algorithm
based on the LP-relaxation and pseudo-cuts, and we de-
scribe how to convert this algorithm into an heuristic
approach. Section 3 contains comparison of the proposed
heuristic with the state-of-the-art approaches, while Sec-
tion 4 concludes the paper.

2. ITERATIVE LINEAR PROGRAMMING-BASED
HEURISTIC (ILPH)

In this paper, we develop an algorithm based on the LP-
relaxation and pseudo-cuts for solving MCND problem.
Those algorithms are based on ideas of solving (optimally
or near optimally) a series of small sub-problems obtained
from a series of linear programming relaxations within the
search for an optimal solution of a given problem. The first
algorithm of such type had been proposed in Soyster et al.
(1978). About twenty years later, Hanafi and Wilbaut
revisited ideas of Soyster et al. and proposed several
algorithms for solving multidimensional knapsack problem
Hanafi and Wilbaut (2011); Wilbaut and Hanafi (2009).
All these papers contain description of exact algorithms
along with proofs of their convergence toward to optimal
solutions.

Formally, work of such an algorithm may be described
in the following way. At each iteration, the LP-relaxation
of the current MIP problem P is solved to generate one
constraint. Then, a reduced problem induced from an
optimal solution of the LP-relaxation is solved to obtain
a feasible solution for the initial problem. If the stopping
criterion is satisfied, then the best lower bound and the
best upper bound are returned. Otherwise, a pseudo cut
is added to P and the process is repeated.

The main idea of the exact algorithm is adding a pseudo−
cut at each iteration in order to eliminate reduced prob-
lems already examined in the previous solution process.
A pseudo-cut consists of linear inequality that excludes
certain solutions from being feasible as solutions of the
considered problem and it may not be valid in the sense
of guaranteeing that at least one globally optimal solution
will be retained in the feasible set.

The pseudo-code of a convergent algorithm based on the
LP-relaxation and pseudo-cuts (CALPPC) is given in
Algorithm 1. At each iteration, the LP-relaxation of the
current problem Q is solved to obtain a lower bound
v and its corresponding optimal solution ȳ. After that
the reduced problem P (ȳ, J), defined by chosen subset
J ⊂ N , is solved to obtain an upper bound and the best
upper bound is updated. The reduced problem P (ȳ, J)
associated to the solution ȳ and subset J is obtained from
the problem P by adding the constraints yj = ȳj for j ∈ J .
Next, the current problem Q is updated by adding the
pseudo-cut δ(y, ȳ, J) =

∑
j∈J |yj − ȳj | ≥ 1 in order to cut

off the region explored by solving the reduced problem.
The algorithm stops if the required tolerance between the
upper and the lower bounds is reached.

Due to the slow convergence of CALPPC algorithm it
cannot be used as an exact algorithm for large instances
in practice. In that case, it is preferable to use it as a
heuristic approach, imposing some other stopping criterion
instead of requiring proof of optimality. The motivation
for proposing heuristics based on the CALPPC algorithm
stem from the fact that for many instances CALPC
algorithm finds an optimal solution quickly but it needs
a lot of CPU time to prove its optimality. Additionally,
sometimes solving reduced problems optimally is time
consuming process itself and therefore it is better to
use a heuristic approach for that purpose. All heuristic
approaches derived from CALPPC framework we will
refer as Iterative Linear Programming-based Heuristics
(ILPH).

For example, a simplest ILPH approach can be obtained
by just stopping the CALPPC algorithm after certain
number of iterations or after reaching the predefined CPU
time limit. Moreover, the difficulty of resulting reduced
problem required to solve in each iteration has big impact
on the overall solution process. Hence, sometimes it is
more beneficial to impose a CPU time limit for solving
a reduced problem instead of solving it to optimality or to
additionally reduce size of the reduced problem.
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