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Abstract: Structural analysis can reveal properties of the investigated systems without knowing
the exact parameters of the system, for example masses, geometries or resistor values. Properties
that can be determined are for instance controllability and observability. Recently, there have
been investigations about structural stability and structural non-minimum phase behavior. In
general by considering the structure of a system a precise answer if the mentioned properties
hold numerically can not be given. This led to the introduction of strong structural properties,
that hold for all admissible numerically realization of the analyzed system. In this paper
the strong structural non-minimum phase property is investigated. The representation of a
dynamical system as a graph is proposed for the structural analysis. A method to calculate the
invariant zeros polynomial from the graph-theoretic representation of a square MIMO systems
is introduced. From that method the strong structural non-minimum phase property is derived.
An example for the application of the method is given.
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1. INTRODUCTION

The structure of a system is described by the mutual
dependency of the state variables xi the inputs ui and
the outputs yi. That means, it is a “yes or no” criterion if
e. g. a state variable xi depends on another state variable
xk or an input uj . A formal definition for the structure of
a system and structurally equivalent systems is given next.
Definition 1. For a set of linear systems ẋ(t) = Aix(t) +
Biu(t), y(t) = Cix(t) with the same number of state
variables, inputs and outputs, their common structure can
be defined by matrices, A∗,B∗ and C∗. An element in these
matrices is zero, denoted by 0, if the element at the same
position is identical zero respectively for all Ai,Bi and Ci.
Otherwise this element is nonzero, denoted by ∗, if the
element at the same position is nonzero and generally
independent respectively for all Ai,Bi and Ci. Systems
have an identical structure, if their states, inputs and
outputs have identical dependencies of each other. Such
systems are called structurally equivalent.

There have been many publications investigating the
structure of a system. One of the first were Lin (1974)
considering structural controllability and Iri et al. (1972)
considering structural “solvability”. The results for struc-
tural controllability and observability, finite and infinite
zeros and poles, for linear systems where summarized in
the book by Reinschke (1988) and the survey by Dion
et al. (2003). In the book by Murota (2009) the topic of
structural properties is discussed in a more mathematical

sense. Structural properties like differential rank, infinite
zeros and invertibility for nonlinear systems were described
in the book by Wey (2002). Stability in structural systems
was investigated by Belabbas (2013).
Obviously, some information about a system is lost if
only its structure is considered. Therefore not always a
precise answer whether the mentioned system properties
hold numerically can be given. The advantage of the
structural analysis is that, if a property holds structurally,
it holds for almost all systems of the same structure.
The question of the existence of structural properties
which hold for all numerical realizations of a system arose.
These properties were called strong structural properties
(Mayeda and Yamada (1979)).
Definition 2. A strong structural property of a system is
a property of a class of systems that are structurally
equivalent. For this class the property under investigation
holds numerically for all admissible numerical realizations.

Some former results about strong structural controllability
were reinvestigated by Jarczyk et al. (2011) and shown
to be wrong. This lead to a new graph-theoretic char-
acterization of strong structural controllability. Recently
Reißig et al. (2014) have extended the results about strong
structural controllability of Mayeda and Yamada (1979)
to the time-variant case. Chapman and Mesbahi (2013)
investigated this property also for networked systems. The
contribution of this work is to establish a strong version
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of the structural non-minimum phase property, which was
established by the authors Daasch et al. (2016).
This paper is organized as follows. In the next section
we will give a short introduction to the representation of
dynamical systems as a graph and we will show how to
determine the invariant zeros polynomial of the Rosen-
brock’s system matrix using graph-theoretical methods.
With that the strong structural non-minimum phase prop-
erty is stated in Section 3. An illustrative example of a
strong structural non-minimum phase system is given in
Section 4. In Section 5 we draw a conclusion and give an
outlook to further research.

2. PRELIMINARIES

The linear system
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) ,

(1)

is considered where the system state variables are denoted
by x(t) ∈ Rn, the input vector by u(t) ∈ Rm and the
output vector by y(t) ∈ Rp.
A graph G(V, E) consists of a set of vertices v ∈ V and
a set of edges e ∈ E . The graph exposes a structure by
connecting two vertices, vi and vj , with an edge ei,j . In a
directed graph, edges establish a connection between two
vertices and assign its direction. This can be extended to
a directed weighted graph G(V, E , W) which additionally
contains a set of weights w ∈ W. In the weighted graph
a value wi,j is assigned to every edge ei,j . Graphically,
vertices are represented by circles © and edges by arrows
→ connecting the cycles and revealing the direction of
connection. If the graph is weighted the labels of the edges
reflect the value of their weights.
The dynamical system (1) can be represented as a graph
using the following rules: The directed (weighted) graph
G(V, E) (G(V, E , W)) of the system (1) consists of m
input vertices u1, . . . , um, n states vertices x1, . . . , xn and
p output vertices y1, . . . , yp. The vertices are connected
by directed (and weighted) edges, generated by following
rules:
(1) There exists a directed edge from input vertex uj to

state vertex xi if in B the element bi,j in the i-th row
and j-th column is nonzero. (Then the weight wi,j of
the edge is given by bi,j .)

(2) There exists a directed edge from state vertex xj to
state vertex xi if in A the element ai,j in the i-th row
and j-th column is nonzero. (Then the weight wi,j of
the edge is given by ai,j .)

(3) There exists a directed edge from state vertex xj to
output vertex yi if in C the element ci,j in the i-th
row and j-th column is nonzero. (Then the weight
wi,j of the edge is given by ci,j .)

A simple example of a graph-theoretic representation of a
system is given in Fig. 1.
The unweighted graph G(V, E) of system (1) reveals the
structure of the system, since the edges in the graph
coincide with the nonzero entries in the matrices A, B and
C. From this point of view we can conclude the following.
Corollary 1. Systems that are structurally equivalent have
the same unweighted graph G(V, E).

u x1

x2 y

b1,1

b2,1 a2,1 a1,2

a1,1

a2,2

c1,1

c1,2

Fig. 1. Example of a weighted directed graph associated
with a general SISO system of order 2.

Hence structural properties can by analyzed using the
unweighted graph G(V, E) and a structural property is
valid for all systems that have the same unweighted graph.
Further, it exists a method to calculate the invariant
zeros polynomial of a system from the graph-theoretic
representation of it. We consider the system (1) with the
restriction that the number of outputs equals the number
of inputs, i. e. m = p. Such a system is called square.
The system (1) can be represented in the frequency domain
by [

X0
Y (s)

]
=

[
sI − A -B

C 0

]

︸ ︷︷ ︸
P (s)

[
X(s)
U(s)

]
(2)

where P (s) is called the Rosenbrock’s system matrix. The
invariant zeros s0i

(MacFarlane and Karcanias (1976)) of a
non-degenerated square system (1) (i. e. where rank P (s) =
n+m holds for allmost all s) are the roots of the invariant
zeros polynomial

det P (s) = pmsn−m + pm+1sn−m−1 + . . . + pn−1s + pn

=
n∑

k=m

pksn−k . (3)

In order to calculate (3) form the graph-theoretic repre-
sentation of a system, we need to define some structures
in the graph.
Definition 3. A (directed) path in the graph G(V, E) is a
sequence of edges {ei,j , ej,k, . . .} connecting the vertices
{vi, vj , vk, . . .} in forward direction, wherein every vertex
is visited only once. If the first vertex and the last vertex
of a path are identical the sequence is called a cycle. The
length of a cycle is the number of vertices connected by
it. A cycle family is the set of disjoint cycles in the graph
G(V, E), i. e. cycles that do not share vertices. The width of
a cycle family is the number of state vertices it touches. A
cycle family is unique if there exists no other cycle family
of same width.

The coefficients of the polynomial (3) can be constructed
by the minors of (2). To achieve this, the idea is to modify
the open loop graph G(V, E) in extension to Definition 31.1
by Reinschke (1988) as follows.
Definition 4. The feedback graph Gf (V, E , W) is con-
structed by inserting feedback edges in the graph G of
system (1). The feedback edges connect the inputs ui to
the outputs yi by the feedback law

u = -Iy , (4)
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