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Abstract: This paper looks into implementation of numerical optimal control problems of
systems with a cascade structure, in which only one part of the dynamic equality constraints
has path constraints. We consider two different direct strategies for numerical implementation
using direct methods: 1. Collocation for both parts of the cascade. 2. Direct collocation for one
part and single shooting for the other. To compare the methods we study the case of iceberg
monitoring using a single unmanned aerial vehicle. The study reveals that the second method,
under some conditions can be more computationally efficient than the first method.
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1. INTRODUCTION

In this paper, we study implementation of different numer-
ical methods for continuous time optimal control problems
(OCPs) formulated as autonomous cascaded nonlinear sys-
tems:

tp
min/ L(p, z,u)dt + Elp(tr), z(tr)] (1la)
u(*) Jt,
s.t.
p:fl(pazau)a p(tO) = Po (1b)
2= fo(z,u), z(to) = 20 (1c)
Zmin < 2 < Zmax (ld)

where p € R" and z € R"= are state variables. The u(t) :
[to,tr] — R™ is the control input. The objective function
consist of the Lagrange term, L(p,z,u) : R™ x R™ x
R™ — R and the Mayer term, E[p(tr), z(tr)] : R™ x
R™ — R. It is solved over a time interval from [to, tr]. In
addition, we have dynamic equality constraints for both
state variables: fi(p,z,u) : R" x R™= x R™ — R" and
fa(zyu) : R x R™ — R":. Finally, zpmin and zpax are
lower and upper limits for the z-state variable. Notice that
we only have inequality constraints for one of the state
variables.

The dynamic systems we study has a cascaded structure,
see e.g. Loria and Panteley (2005) for examples. We choose
to call the “outer state” p the system state, and the “inner
state” z the actuator state. This naming is for convenience,
and need not be consistent with all problems of this form.

Our problem belongs to the field of optimal control theory.
Mathematicians like Bellman and Pontryagin developed
this field of mathematics during the 1950s (Pesch et al.,
2009). A breakthrough in the research of optimal control

theory came with the Pontryagin’s maximum principle
(Pontryagin, 1957). This principle states necessary con-
ditions for optimal control problems in continuous time.
We can use these conditions to eliminate the controls,
u, from the problem and get a boundary value problem,
which we can solve numerically. This is referred to as an
indirect approach to optimal control. However, an indirect
approach suffers from drawbacks like difficulty in initializ-
ing the problem (Betts, 2010; Binder et al., 2001). Another
approach for solving optimal control problems, which we
focus on in this paper, is the direct approach.

In a direct approach, the optimal control problem is first
discretized, before the discretized problem is solved. This
enables us to transform the optimal control problem to
a nonlinear programming problem (NLP). NLPs have
well developed solvers, which are efficient even for large
problems, at least when they have structure.

1.1 Contribution

In this paper we investigate whether merging the objective
function and the system state (the state without path
constraints) into a new objective function, can increase
computational efficiency. This is based on the premise that
reverse algorithmic differentiation is efficient for scalar
functions of many variables (Griewank and Walther, 2008).
This enables us to exploit the structure and compare
different numerical implementation strategies for the new
objective and the actuator state.

1.2 Previous Work

The general field of numerical optimal control is a large
field, in which single shooting and collocation are standard
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methods. We recommend Betts (2010) and Biegler (2010)
as a starting points.

The case we study in this paper is path planning using
a mobile sensor for monitoring some objects or targets,
where we directly build on the approach used in Haugen
and Imsland (2013). Another interesting paper studying
the same problem is Walton et al. (2014). Both these
papers use collocation in implementing a nonlinear prob-
lem for path planning formulated similar as OCP (1).
A difference between the two is the solver used; where
Haugen and Imsland (2013) uses an interior-point solver
as in this paper, while Walton et al. (2014) uses a SQP
algorithm.

This paper starts with a formulation of the problem and
implementation strategies in Section 2. In Section 3 we
go into details for the implementation for the different
approaches we use. We present the case we are using
for simulation in Section 4. In Section 5 we explain the
setup for the simulation. We run and discuss the results in
Section 6 before we come with concluding remarks in the
final Section 7.

2. PROBLEM FORMULATION AND
IMPLEMENTATION STRATEGIES

We want to explore discretization strategies in direct
approaches for solving problems on the form of OCP (1)
in a computationally efficient manner. There are broadly
three discretization approaches: Single shooting, multiple
shooting and collocation (Binder et al., 2001). Each of the
approaches have their own advantages and disadvantages.

We apply two different strategies for implementation.
First, we use collocation for both the system and actuator
state. This is the same strategy as used by Haugen and
Imsland (2013) and Walton et al. (2014). However, we
use a different number of integration steps and degree
of the collocation polynomial for the two states. We call
this the pure collocation approach. Second, we want to
exploit the structure of our problem. We can merge the
objective function with the system state into a scalar
function using single shooting, for which evaluating the
gradient has approximately the same complexity as evalu-
ating the function itself using reverse algorithmic differ-
entiation (Griewank and Walther, 2008). For the actu-
ator state, which contains both inequality and dynamic
equality constraints, we apply collocation for easy handling
of the inequality constraints. We term this the combined
approach with exact Hessian. In addition, we extend the
second approach into two additional approaches. Third,
we use limited-memory BFGS-update for the Hessian, we
term this approach BFGS. This will generally lead to
more iterations, but avoid calculating the computationally
expensive Hessian. Fourth, we use the Hessian and increase
the convergence tolerance for the NLP-solver. We term
this approach BFGS—. With this approach we avoid more
iterations, but we might get suboptimal solutions.

3. IMPLEMENTATION

For implementation we use Python with CasADi (Ander-
sson, 2013), which is “a symbolic framework for algorith-
mic differentiation and numeric optimization”. CasADi

is open-source and implemented in C++ with Python
wrappers. We exploit the CasADi framework to use the
NLP-solver IPOPT (Wichter and Biegler, 2006). IPOPT
is a primal-dual interior-point NLP-solver. We compile it
with the linear algebra sparse direct solver MA57 (HSL,
2015). We chose a interior-point solver over a SQP -solver.
The single-shooting approach may fit a SQP-solver better,
however we will exploit collocation for all our approaches
that leads to huge problems with a sparse structure, for
which an interior-point solver in general is a good match.
Therefore, we do not include a SQP-solver in our simula-
tions.

We use different strategies to approximate the integral in
equation (1a) from problem (1) depending on our chosen
implementation.

8.1 Collocation Approach

For the pure collocation approach we approximate the in-
tegral (1a) as a sum of states. When using only collocation
we have all the states of the state variables available.

N
min ZAtL(pn,zn,zn) + Ep(tr),2(tr)] (2a)
u(-),p(+),2(+) el
s.t.
p= filp,z,u), p(to) =po (2b)
Z = fa(z,u), z(to) = 20 (2¢)
Zmin S z S Zmax (2d>

Here N is the number of integration steps in approximat-
ing the integral. We use collocation for both the state and
actuator state.

3.2 Combined Approach

In the combined approaches we embed the system dynam-
ics (the p-dynamics) into the objective, by solving it by
means of single shooting. For this type of cascade systems
this will always be feasible. To illustrate this, we formulate
the optimization problem in the following manner
min - c(z(-), u(-); po, ty)
u(+),2(+)
S. t.

Z= fZ(Zau);

Zmin § z S Zmax

(3a)

(3b)
(3¢)
where the only dynamic constraint is the actuator dynam-
ics (z-dynamics). The function ¢ is a a scalar function
obtained by solving the system dynamics (e.g. by single
shooting),

Z(to) = 20

ty

p(t;2(-),u(:),po) = po + fi1(p, z,u)dt,

to
and inserting this solution into the objective:

tf
c(z(4),u(-);po, ty) = /t L(p, z,u)dt + E[p(ts), z(ty)).
0

The actuator dynamics is still discretized using collocation
(Biegler, 2010). In our implementation, we use a simple
Euler method for the single-shooting discretization of p,
and correspondingly a rectangle method for approximating
the integral.
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