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a  b  s  t  r  a  c  t

This  paper  is about  a real-time  model  predictive  control  (MPC)  algorithm  for  a particular  class  of model
based  controllers,  whose  objective  consists  of a nominal  tracking  objective  and  an  additional  learning
objective.  Here,  the  construction  of the  learning  term  is based  on  an  economic  optimal  experiment  design
criterion.  It  is  added  to the  MPC  objective  in  order  to  excite  the  system  on purpose  thereby  improving
the  accuracy  of the  state  and  parameter  estimates  in the  presence  of  incomplete  or  noise  affected  mea-
surements.  The  focus  of this  paper  is  on so-called  self-reflective  model  predictive  control  schemes,  which
have  the  property  that  the  additional  learning  term  can  be interpreted  as  the  expected  loss  of  optimality
of  the  controller  in the  presence  of random  measurement  errors.  The  main  contribution  is  a formulation-
tailored  algorithm,  which  exploits  the particular  structure  of  self-reflective  MPC problems  in  order  to
speed-up  the  online  computation.  It  is  shown  that  the  proposed  algorithm  can  solve  the self-reflective
optimization  problems  with  reasonable  additional  computational  effort  and  in real-time.

©  2017  Published  by  Elsevier  Ltd.

1. Introduction

The standard variant of model predictive control (MPC) [1,2]
relies on the principle of certainty equivalence: at every sampling
time a nominal control performance objective is optimized subject
to dynamic model equations as well as control and state constraints
on a finite prediction horizon. Here, the underlying assumption is
that there are neither state estimation errors, nor external distur-
bances, nor any kind of model plant mismatches present, although
all these errors and disturbances are the reason why a feedback con-
troller is needed in the first place. After the MPC  controller sends
the first element of the optimized control input sequence to the real
process, the next optimization problem is solved by using the lat-
est state estimate in order to close the loop. The success of such
certainty equivalent model predictive controllers, also in indus-
trial applications [3], is to a large part due to the availability of
fast and reliable real-time optimal control problem solvers [4,5].
During the last years algorithms as well as mature automatic code
generation based software have been developed, which can solve
nonlinear model predictive control problems online and within
sampling times in the milli- and microsecond range [6,7].

Although one might argue that standard MPC  and its more tra-
ditional variants do not attempt to achieve a tradeoff between
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nominal performance and learning objectives, many other con-
trollers from the field of adaptive control, which implement such
tradeoffs, have a longer history. One of the pioneers of the so-called
dual control problem is A. Feldbaum, who published a whole series
of papers on this topic [8]. Numerical algorithms for solving the
dual control problem in higher dimensional spaces are often based
on approximate dynamic programming, which, however, turn out
to be rather expensive [9]. For an overview about other attempts
to solve the dual control problem approximately by using tech-
niques from the field of adaptive control the reader is referred to
the overview articles [10,11].

As mentioned above, earlier or more traditional variants of MPC
usually do not analyze learning objectives explicitly. However, dur-
ing the last decade this situation has changed and, especially in
recent years, there have appeared a significant number of articles
about MPC  variants that incorporate additional learning terms in
order to achieve better future state and parameter estimates. For
example, in [12] it is suggested to augment the standard MPC  objec-
tive by an additional term that penalizes an approximation of the
variance of future state estimates. This can be implemented by aug-
menting the model equations with an extended Kalman filter that
can be used to predict the variance of future state and parame-
ter estimates in a linear approximation. Similar extensions of MPC
with learning terms have been proposed in [13,14], which augment
the nominal MPC  objective with optimal experiment design objec-
tives that penalize the predicted variance of the system parameters.
In recent years there have appeared a number of articles on
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persistently exciting MPC  [15–19], which all discuss different ways
to excite model predictive controllers in order to improve the accu-
racy of future state and parameter estimates. An even more recent
trend is to extend the concept of application oriented optimal
experiment design [20] by associated terms in the objective or con-
straints of an MPC  problem [21,22]. Moreover, a recent paper on
self-reflective model predictive control [23] proposes a model pre-
dictive controller that minimizes a prediction of its own  expected
loss of control performance in the presence of measurement noise.

A rather apparent drawback of all the above reviewed model
predictive control schemes with additional learning objectives is
that they are based on introducing additional, typically matrix-
valued hyperstates, which are needed for predicting the accuracy
of future state and parameter estimates. This leads to an optimal
control problem that is from a numerical computation perspec-
tive much more difficult to solve than the corresponding optimal
control problem without learning terms. Unfortunately, real-time
algorithms, which exploit the structure of the model predictive
control problems with additional learning terms, are not available
to date—let alone implementations and software for solving these
problems reliably. Therefore, a principal goal of this paper is to
develop a real-time algorithm that can exploit the structure of such
problems. Here, we focus on the self-reflective model predictive
control formulation, which has been proposed in [23] and which is
based on augmenting a nominal MPC  objective with an economic
optimal experiment design criterion [24].

Section 2 reviews selected MPC  schemes, which include addi-
tional learning objectives. A particular focus is on self-reflective
MPC  and Theorem 1 summarizes the main theoretical properties of
this self-reflective controller, which have been analyzed originally
in [23]. In contrast to the theoretical developments in [23], the focus
of the current paper is on the development of numerical algorithms
and their implementation. Section 3.3 introduces a novel real-time
algorithm for self-reflective MPC, which constitutes the main con-
tribution of this paper. Theorem 3 establishes the corresponding
theoretical contraction property of this real-time algorithm. More-
over, Section 4 illustrates the practical performance of the proposed
scheme and discusses its advantages and disadvantages compared
to more traditional MPC  control algorithms. It is shown that the pro-
posed algorithm can solve the self-reflective MPC  problem within
a sampling time that amounts to less than four times the sam-
pling time of an associated certainty-equivalent real-time MPC
scheme [4]. The corresponding numerical implementation is based
on CASADI [25,26] and ACADO toolkit [6]. Section 5 concludes the
paper.

1.1. Notation

We  use the symbol S
n+ to denote the set of positive semi-definite

n × n matrices. Similarly, S
n++ denotes the set of positive definite

n × n matrices. Throughout this paper, the symbol k ∈ {0, . . .,  N − 1}
is used as a running index, which, by convention, always runs from
0 to N − 1 ∈ N. For example, if we write a discrete-time system in
the form

xk+1 = f (xk, uk),

then this means—if not explicitly stated otherwise—that this equa-
tion should hold for all k ∈ {0, . . .,  N − 1}.

2. Model predictive control with learning objectives

2.1. Problem formulation

This paper concerns nonlinear control systems of the form

xk+1 = f (xk, uk) + wk. (1)

Here, xk ∈ R
nx denotes the state, uk ∈ R

nu the control, and f : R
nx ×

R
nu → R

nx the right-hand side function. The variables wk ∈ R
nx

denote the process noise.1 Throughout this paper, the measure-
ments are assumed to have the form

�k = Cxk + vk, (2)

where C ∈ R
n� × R

nx is a given matrix, vk ∈ R
n� the random

measurement error, and �k ∈ R
n� the actual measurement. The

following sections discuss the advantages and disadvantages of
various model predictive controllers whose goal is to minimize a
control performance objective of the form,

N−1∑
k=0

l(xk, uk) + m(xN)

on a finite horizon with given length N ∈ N. Here, l : R
nx × R

nu → R

denotes the stage cost and m : R
nx → R  the end cost. Throughout

this paper, the following assumptions are used.

Assumption 1. We  assume that the measurement errors vk and
the process noise wk are pairwise uncorrelated random variables
with bounded support, i.e., ‖vk‖ ≤ � and ‖wk‖ ≤ � for a given radius
� > 0.

Assumption 2. We  assume that the first and second order
moments of wk and vk, denoted by W ∈ Snx+ and V ∈ Sn�++, are given,

E{wk} = 0, E{vk} = 0, E{wkwTk } = W,  E{vkvTk } = V. (3)

Assumption 3. We  assume that the functions f, l, and m are at
least three times differentiable in all arguments and all associated
third derivatives are locally Lipschitz continuous.

Assumption 4. We  have f(0, 0) = 0, l(0, 0) = 0, m(0) = 0, l(x, u) ≥ 0,
m(x) ≥ 0, and the functions l and m are strongly convex.

In practice, the above control model needs to be augmented
with additional control and state constraints, which can be mod-
elled by adding suitable barrier functions to the function l, as for
example discussed in the context of interior point based real-time
algorithms for MPC  [27,28,5]. As the focus of this paper is on the
influence of the process noise and measurement errors on the MPC
problem, we  do not highlight such control- and state constraints
in our notation throughout the theoretical developments, but our
case study in Section 4 discusses how to deal with such constraints.
Finally, Assumption 4 is made for simplicity of presentation and
many of the results in this paper can be generalized for non-convex
stage-costs. However, from a practical perspective, this condition
is not excessively restrictive in the sense that in the context of
MPC  one often considers least-squares tracking-terms, which sat-
isfy Assumption 4.

Remark 1. The statements in this paper can be extended for the
more general case that the measurement function depends nonlin-
early on xk and uk,

�k = h(xk, uk) + vk

for a two times Lipschitz continuously differentiable function h by
formally replacing C with the state- and control dependent expres-
sion

C ←− ∇xh(xk, uk)
T .

1 Notice that uncertain time-invariant system parameters can be modeled by
introducing auxiliary states, which satisfy the trivial recursion pk+1 = pk . Such time-
invariant uncertainties should not be mixed up with the process noise wk , which
depends on the time-index k.
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