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a  b  s  t  r  a  c  t

Kernel  principal  component  analysis  (KPCA),  which  is  a nonlinear  extension  of principal  component
analysis  (PCA),  has  gained  significant  attention  as a monitoring  method  for nonlinear  processes.  However,
KPCA cannot  perform  well  for dynamic  systems  and  when  the  training  data  set  is large.  Therefore,  in  this
paper, an  online  reduced  KPCA  algorithm  for process  monitoring  is proposed.  The  process  monitoring
performances  are  studied  using  two  examples:  a numerical  example  and  Tennessee  Eastman  Process
(TEP).  The  simulation  results  demonstrate  the  effectiveness  of  the  proposed  method  when  compared  to
the  online  KPCA  method.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The last century has seen an increasingly emergence of manu-
facturing and process industries, with the rise of energy costs and
environmental regulations. In these environments, processes are
highly automated. Therefore, the monitoring algorithms are impor-
tant to detect any fault that might occur. Multivariate statistical
methods such as principal component analysis (PCA) [8,16,3,27],
independent component analysis (ICA) [17,20,10] and partial least
squares (PLS) [28,1] have been applied for process monitoring. PCA
is the most used technique because of the simplicity of its con-
cept and implementation. It transforms the original input variables
into variables in a low dimensional subspace. Process monitoring
is detecting faults in a system. In the PCA method, fault detec-
tion is performed using fault detection indices. The most used
indices are the squared prediction error (SPE) that monitors the
residual subspace and the Hotelling T2 statistic for monitoring the
principal component subspace. The PCA method assumes that the
relationships among variables are linear and may  ignore important
information in the behaviors of nonlinear systems. However, the
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majority of industrial processes have nonlinear characteristics. To
address this issue, many nonlinear PCA methods have been devel-
oped [18,6,26]. The most popular one is kernel principal component
analysis (KPCA) [26,23] because of its simplicity and elegance. It
has been shown in [21], that KPCA method is used for monitor-
ing continuous processes and it provided better performance when
compared to linear PCA method. KPCA can efficiently compute prin-
cipal components in high-dimensional feature space using integral
operators and nonlinear kernel functions. It consists in mapping
measurements from their original space to a higher dimensional
feature space where PCA is performed. Fault detection using KPCA
[22,4,24,9] can be performed similarly to linear PCA using SPE and
T2 statistics in the feature space. In the KPCA method, the size of the
kernel matrix is given by the number of the training samples. Every
time a new sample x is collected, N kernel functions have to be eval-
uated to form the kernel vector k(x). Therefore, using KPCA model
for process monitoring imposes a high computational cost when
the training data set is large. K-means clustering [25] was devel-
oped in order to reduce the amount of training data. It requires the
number of clusters in advance, therefore using it for process mon-
itoring leads to numerous errors because it doesn’t consider the
variation of parameters according to the process operation changes.

In [15], the fault detection singular value decomposition
reduced kernel principal component analysis (SVD-RKPCA) method
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is proposed for online monitoring of nonlinear processes. The SVD-
RKPCA method is performed in two phases (offline and online). It
consists in finding a reduced data set by selecting the variables that
have the highest projection variance to build the initial KPCA model
in the offline phase and then updating this model using the SVD-
KPCA technique in the online phase. In the SVD-RKPCA method,
the dictionary size is fixed during the training and testing phases.
Thus, the large size of reduced data set can lead to a significant
reduction in the computational efficiency. In addition, when the
size of reduced data set is small, the updated information on the
systems can be ignored and SVD-RKPCA cannot perform well for
dynamic systems. To overcome the problems stated above, a new
method referred as online reduced KPCA for process monitoring is
proposed. The method aims to reduce the number of kernel func-
tions. The reduced set of kernel functions is called dictionary. A new
criterion based on squared prediction error evaluation determines
the relevance of discarding or adding the kernel function to the
dictionary Dr . The resulting dictionary contains linearly indepen-
dent kernel functions. The proposed method is performed in the
online phase and takes into consideration the dynamic behaviors
of the systems by changing the model structure. In the proposed
online reduced KPCA method, the size of dictionary is variable and
depends on the evaluated criterion. The proposed method forms
the dictionary in an online way and then it updates the old KPCA
model and uses it for process monitoring. The new method reduces
significantly the computation time required to detect faults in non-
linear systems while conserving the structure of the data in the
feature space. The performance of the proposed method is evalu-
ated using a numerical example and Tennessee Eastman Process
(TEP). The simulation results show that the proposed method pro-
vides better detection performances when compared to the online
KPCA method.

This paper is organized as follows: an overview of the PCA and
KPCA methods is given in Section 2. The fault detection index SPE
is presented in Section 3. Section 4 presents the proposed online
reduced KPCA method. Then, in Section 5, the fault detection per-
formance is studied using a numerical example and TEP. At the end,
the conclusions are presented in Section 6.

2. Preliminaries

2.1. Principal component analysis

The main idea of the principal component analysis (PCA) method
is discarding the noise and collinearity between process variables,
while preserving the most important information of the original
data set. A PCA model is established based on the data collected
under normal operating conditions for process monitoring.

Let X ∈ RN×m be the data matrix with N measurements and m
variables. For PCA modeling, the matrix X is scaled to zero mean
and unit variance. The covariance matrix  ̇ of the data matrix X
and its eigenvalue decomposition are given by:

 ̇ = 1
N

XT X

=
[

P̂ P̃
]⎡
⎣ �̂ 0

0 �̃

⎤
⎦[

P̂ P̃
]T

(1)

where P̂ ∈ Rm×� and P̃ ∈ Rm×(m−�), representing the first � and last
(m − �) eigenvectors of ˙,  respectively. � is the number of retained
principal components (PCs). The diagonal matrices �̂ and �̃ contain
the � highest and (m − �) lowest eigenvalues of ˙,  respectively. The
data matrix X can be decomposed as follows:

X = X̂ + X̃ (2)

where X̂ and X̃ are the projection to the principal subspace (PS),
spanned by the columns of P̂,  and to the residual subspace (RS)
spanned by the columns of P̃.

2.2. Kernel principal component analysis

Since the classical PCA method performs well only on linear pro-
cesses, a nonlinear PCA technique called kernel PCA (KPCA), has
been developed by Schölkopf et al. [26] and widely used to model
various nonlinear processes. The key idea of KPCA is to map first
the input space into a feature space H via nonlinear mapping �
and then perform a linear PCA in H.  Let the normalized training set
be x1, x2, . . .,  xN ∈ Rm, The measured inputs are projected into the
feature space using the mapping function �:

� : xi ∈ Rm �→ �(xi) ∈ Rh (3)

where h � N is the dimension of the feature space. An important
property of the feature space is that the dot product of two vectors
�(xi) and �(xj), i, j = 1, . . .,  N, can be calculated as:

�(xi)
T �(xj) = 〈�(xi), �(xj)〉 = k(xi, xj) (4)

where k is called the kernel function. There are several types of
kernel functions. One of the most used kernel functions is the radial
basis function (RBF) which is defined as:

k(xi, xj) = exp

[
−‖xi − xj‖2

�2

]
(5)

where � is the width of a Gaussian function. Assuming that the
vectors in the feature space are scaled to zero mean, the mapped
data in H is arranged as

X  =
[

�(x1) �(x2) · · · �(xN)
]T

.

The covariance matrix Q in the feature space H can be calculated
as:

Q = 1
N − 1

XTX

= 1
N − 1

N∑
j=1

�(xj)�(xj)
T

(6)

where it is assumed that
∑N

j=1�(xj) = 0. Similarly to the linear PCA,
KPCA in the feature space is equivalent to solving the following
eigenvalue problem:

�kVk = QVk

= 1
N − 1

N∑
j=1

〈�(xj), Vk〉�(xj)
(7)

where �k and Vk represent respectively the kth eigenvalue and
eigenvector of Q, and 〈 ., . 〉 is the dot product. For �k /= 0, it is clear
from Eq. (7) that every eigenvector Vk of Q can be considered as a
linear combination of �(x1), . . .,  �(xN). Thus, there are coefficients
˛k,i (i = 1, . . .,  N) such that:

Vk =
N∑

i=1

˛k,i�(xi)

= XT ˛k

(8)
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