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Abstract: We study synchronization in two FitzHugh-Nagumo systems with discrete coupling,
which are the simplest model of neural network. It is well known that high delays in propagation
between the nodes hinder synchronization. We use the linear matrix inequality method to study
the impact of the discretization step on the system synchronization. We show that external
stimulus can be used for controlling synchrony in the case of its absence. We develop the
algorithm for synchronization of FitzHugh-Nagumo systems and find the conditions of its
applicability. The simulation results confirm the efficiency of suggested algorithm.
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1. INTRODUCTION

Synchronization phenomenon attracts a lot of attention of
researchers from different scientific communities for many
years Blekhman (1988); Pikovsky et al. (2001). An area of
special interest is synchronization in large populations of
interacting oscillatory elements Winfree (1980); Kuramoto
(1984); Tass (1999); Strogatz (2014); Schöll et al. (2016),
relevant to many problems of physics, biology, chemistry
and engineering, in particular, to neuroscince.

As any other kind of physical, chemical, or biological oscil-
lators, such neurons could synchronize and exhibit collec-
tive behavior that is not intrinsic to any individual neuron.
For example, partial synchrony in cortical systems is be-
lieved to generate various brain oscillations, such as the al-
pha and gamma EEG rhythms. Coordinated synchrony is
needed for locomotion and swim pattern generation in fish
Izhikevich (2005). On the one hand, synchronization can
be good, while, on the other hand, it can be harmful. For
example, synchronization of individual neurons is believed
to play the crucial role in the emergence of pathological
rhythmic brain activity in Parkinson’s disease, essential
tremor, and epilepsies; a detailed discussion of this topic
and numerous citations can be found in Refs. Tass (1999);
Golomb et al. (2001).

In order to grasp the complicated interaction of neurons in
large neural networks, those are often lumped into groups
of neural populations each of which can be represented as
en effective excitable element that is mutually coupled to
other elements Rosenblum and Pikovsky (2004); Popovych
et al. (2004). In this sense the simplest model which may
reveal features of interacting neurons consists of two cou-
pled neural oscillators. Each of this can be represented by
a simplifiled FitzHugh-Nagumo system FitzHugh (1961);
Nagumo et al. (1962). In recent papers Plotnikov (2015);
Plotnikov (2015) we investigate the synchronization in two

FitzHugh-Nagumo networks with heterogeneous thresh-
olds and slowly-varying delays in signal propagation, re-
spectively. Here we focus on the systems with discrete
coupling, because the neuron affects on its neighbors by
spiking, which occurs between the resting periods.

The problem of the estimation of the discretization step
(interval) providing stability and acceptable system per-
formance is nontrivial. Some results for linear systems
were obtained in Fridman (2010), while the method of
discretization step estimation was recently generalized for
nonlinear systems Seifullaev and Fradkov (2015). In the re-
cent years the international literature manifested interest
in a new approach based on the rearranging the discrete-
continuous model of the system to the form with vary-
ing (sawtooth) delay. Using this representation the meth-
ods of Lyapunov-Krasovskii functionals and Lyapunov-
Razumikhin functionals find the wide implementation
Kharitonov and Zhabko (2003); Gelig and Zuber (2011).
Here we use the method suggested in Seifullaev and Frad-
kov (2015) for the estimation of the discretization step
while the system is possible to synchronize, because the
considered system is nonlinear. If synchronization of the
system without control is impossible, then we use the
controller designed by an application of the Halanay’s
inequality Halanay (1966) that extends the Razumikhin
method Gu et al. (2003).

The paper is organized as follows. After this introduction
we describe the model system and define the synchroniza-
tion problem in Sec. 2. Section 3 studies the dependency
of the upper boundary value of the discretization step
in the coupling on the coupling strength, while in Sec. 4
the control algorithm is described to ensure the systems
synchronization. Finally, we conclude with Sec. 5.
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2. MODEL EQUATION

The FitzHugh-Nagumo (FHN) model FitzHugh (1961);
Nagumo et al. (1962) consists of a modified version of
the Van der Pol’s equations Van der Pol (1926, 1927) to
describe relaxation oscillators, aiming to capture the char-
acteristics of neuronal oscillations. The motion equations
are defined by two state variables representing excitabil-
ity and refractoriness, the membrane potential u and a
recovey variable v, respectively, as described in (1):

u̇ = u− u3

3
− v,

v̇ = ε(u+ a− bv),
(1)

where the parameters a, b and ε are constants with values
0.7, 0.8 and 0.1, respectively. This relatively simple dy-
namical system can reproduce several phenomena related
to excitable cells in responce to a stimulus, such as sub-
threshold oscillations, suprathreshold oscillations (action
potentials), relative refractoriness and absolute refractori-
ness, just to mention a few Schwan (1969); Koch (1999);
Izhikevich (2005); Soriano et al. (2012).

Now consider two coupled FHN systems, which are the
simplest model of the neural network:

u̇1 = u1 −
u3
1

3
− v1 + C[uc

2(t)− u1(t)] + I(t),

v̇1 = ε(u1 + a− bv1),

u̇2 = u2 −
u3
2

3
− v2 + C[uc

1(t)− u2(t)],

v̇2 = ε(u2 + a− bv2),

(2)

where C is a coupling strength and I(t) is an external
stimulus, which is considered as a control. The propagation
signal is assumed to be generated by a zero-order hold
function with a sequence of sampling instants 0 = t0 <
t1 < · · · < tk < . . .

uc
1(t) = u1(tk), uc

2(t) = u2(tk), tk ≤ t < tk+1, (3)

where limk→∞ tk = ∞.

The reason to consider the discrete propagation signal is
that neuron affects on its neighbors by spiking, which
occurs between the resting periods. Assume that the
inequalities

tk+1 − tk ≤ h ∀k ≥ 0 (4)
are satisfied for some h > 0. Following Mikheev et al.
(1988), we represent the digital signal as a delayed signal
as follows:

uc
i (t) = ui(tk) = ui(t− τ(t)), i = 1, 2

τ(t) = t− tk, tk ≤ t < tk+1.
(5)

Let us formulate the problem of variable value synchro-
nization in two coupled FHN systems. To this end subtract
the third equation from the first one, and the fourth one
from the second one (2), respectively, making the following
substitution

δ1 = u1 − u2, δ2 = v1 − v2, (6)

and obtain
δ̇1 = (1− C − φ)δ1 − Cδ(t− τ)− δ2 + I,

δ̇2 = ε(δ1 − bδ2),

t ∈ [tk, tk+1), τ(t) = t− tk.

(7)

where φ = 1/3(u2
1+u1u2+u2

2), φ(t) ≥ 0, ∀t. Our objective
is to study the impact of the discretization step h on

Fig. 1. Solvability of the LMI in Theorem 2 Seifullaev and
Fradkov (2015) for the system (7) (green color), and
area of the system (7) synchronization obtained by the
simulation (red color). Parameters: b = 0.8, a = 0.7,
ε = 0.1.

stability of the system (7) without control, i.e. I(t) = 0,
and design the control algorithm to ensure the stability of
the system (7) in the case of its absence.

3. STABILITY ANALYSIS

In this section we study the influence of the discretization
step h on the system (7) stability depending on the cou-
pling strength C. Here we assume that external stimulus
I(t) equals 0.

We apply the approach of Seifullaev and Fradkov (2015) to
get the estimation of discretization step h needed for sys-
tem (7) synchronization. For its application we should find
the boundary straight lines between which nonlinearity
lies. For this purpose let introduce the following Lyapunov
function

V (t,x(t)) =
1

2

[
u2
1 + u2

2 +
1

ε

(
v21 + v22

)

+ C

t∫

t−τ(t)

(u2
1(s) + u2

2(s))ds

]
, (8)

where x = (u1, u2, v1, v2). Meaning substitutions (5) find
its derivative according to the system (2) without control
I(t):

V̇ (t,x(t)) = −u4
1/3+u2

1−u1v1+Cu1u2(t− τ(t))−Cu2
1

− u4
2/3 + u2

2 − u2v2 + Cu2u1(t− τ(t))− Cu2
2

+ u1v1 + av1 − bv21 + u2v2 + av2 − bv22
+ Cu2

1/2 + Cu2
2/2− Cu2

1(t− τ(t))/2− Cu2
2(t− τ(t))/2

= −C(u1(t− τ)− u2)
2/2− C(u2(t− τ(t)− u1)

2/2

− (u2
1 − 3/2)2/3− (u2

2 − 3/2)2/3

− b(v1 − a/2b)2 − b(v2 − a/2b)2 + 3/2 + a2/2b. (9)

This Lyapunov function derivative is negative if

(u2
i − 3/2)2

3
>

3

2
+

a2

2b
, i = 1, 2, (10)
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