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Abstract:

We examine nonlinear singularly perturbed systems, described by integro-differential equations
with periodic nonlinearities. Equations with periodic nonlinearities govern phase-locked loops
and other synchronization circuits, as well as many “pendulum-like” systems, arising in
mechanics and physics. The presence of periodic nonlinearity typically endows the system with
infinite sequence of equilibria points. One of the central questions related to such systems is
whether any solution converges to one of the equilibria (which is sometimes referred to as
the gradient-like behavior) or some oscillatory solutions exist. Under singular perturbation, the
self-standing problem is the persistence of the gradient-like behavior as the small parameter
tends to zero. In spite of substantial efforts in solving these problem, the existing conditions for
the gradient-like behavior (which guarantee, in particular, the absence of oscillations) are only
sufficient and may be quite conservative. In this paper we demonstrate that their relaxation
guarantees inexistence of special oscillatory trajectories, namely, periodic solutions of high
frequency. We give constructive frequency-domain conditions, which guarantee that all periodic
solutions in the system, if they exist, have frequencies lower than some predefined constant. An
important property of this estimate is its uniformity with respect to the small parameter.
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1. INTRODUCTION

Singularly perturbed equations are used to model wide
range of natural and engineered systems, operating on two
different timescales and having thus “fast” and “slow”
modes. Numerous examples and main historical mile-
stones of the singular perturbation theory can be found
in Fridrichs (1955); Dyke (1964); Cole (1968); Kokotovic
et al. (1986); O’Malley (1991); Naidu and Calise (2001).
Singularly perturbed equations involve a small scalar pa-
rameter, whose vanishing causes changes in system’s struc-
ture or other discontinuities. Typically, the order of the
highest derivative or the state vector dimension decreases.

Up to now, the efforts in the mathematical analysis of
singular perturbations has been mainly focused on two
problems. The first problem deals with asymptotical prop-
erties of the perturbed system as the parameter tends
to zero. The central result, sometimes referred to as the
Tikhonov approximation theorem Tikhonov (1948), es-
tablishes convergence of the perturbed solutions to the
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unperturbed ones. The Tikhonov-type theorems were elab-
orated for a wide class of ODE systems Vasil’eva (1963)
and later extended to integral equations and PDE; some
recent developments can be found in Lizama and Prado
(2006a,b); Parand and Rad (2011); Tang et al. (2016).
The second problem is concerned with criteria for stability
under sufficiently small parameter, pioneered by Klimu-
shev and Krasovskii (1961) and extended to a wide class
of linear Cao and Schwartz (2004) and nonlinear systems
Chow (1978); Khalil (1981). The extensive studies on sta-
bility and asymptotic analysis enabled the expansion of
the classical control, identification and filtering theories to
singularly perturbed systems Kokotovic et al. (1986).

In spite of this substantial progress, many important
problems related to the dynamics of singularly perturbed
systems still remain open. For instance, unlike global
asymptotical stability properties, the effects of multista-
bility caused by presence of multiple equilibria points are
almost uncovered by the existing literature on singularly
perturbed systems. In this paper we consider a wide class
of systems that can be represented as the feedback in-
terconnection of a linear part and periodic nonlinearity.
Such systems usually have infinite sequences of stable
and unstable equilibria, as exemplified by the mathemat-
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ical pendulum and other pendulum-like systems Stoker
(1950). Similar models describe phase-locked loops (PLL)
and other synchronization circuits, arising in electrical
and communication engineering Margaris (2004); Leonov
et al. (2015). In view of these applications, a term “phase
synchronization” systems (PSS) for models with periodic
nonlinearities was coined Leonov (2006).

One of the central questions regarding the dynamics of
PSS is the global attractivity of the equilibrium set, that
is, convergence of any solution to one of the equilibria.
This property, sometimes referred to as the gradient-
like behavior Leonov (2006), excludes the possibility
of oscillatory solutions, considered to be undesirable in
electric circuits Leonov et al. (2015). Efficient sufficient
conditions for the gradient-like behavior in the “frequency-
algebraic” form, based on the periodic Lyapunov functions
and the Popov’s method Popov (1973), can be found in
Leonov (2006); Leonov et al. (1996); Perkin et al. (2012);
Smirnova and Proskurnikov (2016).

In the case where the gradient-like behavior of a system
cannot be proved, a natural question arises which oscil-
latory and, in particular, periodic solutions it has. Exis-
tence of periodic solutions of some prescribed frequency
in special phase locked loops was studied in Shakhil’dyan
and Lyakhovkin (1972); Evtyanov and Snedkova (1968). In
the later paper Leonov and Speranskaya (1985) a general
inexistence criterion was obtained, employing the Fourier
series method. It was shown that a relaxed version of the
condition for the gradient-like behavior guarantees absence
of “fast-oscillating” periodic solutions, whose frequencies
are beyond the prescribed range. The results of Leonov and
Speranskaya (1985) were extended to discrete-time Leonov
and Fyodorov (2011) and infinite dimensional Leonov et al.
(1996) PSS. The latter results were extended, with tight-
ening of the frequency-algebraic conditions, in Perkin et al.
(2015); Smirnova and Proskurnikov (2016) by employing
novel Popov-type functionals from Perkin et al. (2012).

In this paper we extend the results of Perkin et al. (2015)
to PSS modeled by singularly perturbed equations and
get frequency-domain criteria for the inexistence of the
fast-oscillating periodic solutions. These conditions are
uniform with respect to the small parameter. It should be
noticed that singular perturbations naturally arise in many
models, related to mechanical and electrical systems, e.g.
various relaxation oscillations O’Malley (1991). In PLL,
singularly perturbed Volterra equations naturally describe
the effects of “weak filtering”, where the small parameter
determines the filter bandwidth Hoppensteadt (1983).

2. PROBLEM SETUP

In this paper, we deal with the integro-differential Volterra
equation with a small parameter p at the higher derivative:
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Here p > 0,h > 0,p € R, v,a: [0,400) — R, ¢:
R — R. The map ¢ is assumed C! - smooth and A-
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We suppose that the kernel function ~(-) is piece-wise
continuous and the function «(+) is continuous.We assume
also that the linear part of (1) is stable:

la(t)] + (1) < Me™™ (M, > 0). (3)

For each p the solution of (1) is uniquely defined by
specifying initial condition

7u(®)lse-n0 = (). (4)
Here ¢°(:) is C'-smooth with ¢,(0+4 0) =0°(0) and
7,(0+0) = 6°(0). We put by definition
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so that the nonlinearity satisfies the slope restrictions
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In this paper, we are interested in the criteria, ensuring
the inexistence of periodic solutions in (1) under arbitrary
sufficiently small pu. We start with a formal definition. In
the theory of functional and differential equations, the
periodic solutions to the equation are typically defined
as periodic functions, obeying this equation. Dealing with
PSS (in particular, PLL), the solution periodicity is under-
stood in a broader sense Leonov et al. (1996). The phase
o(t) is not necessarily periodic function but may “slip
several cycles” Stoker (1950) over the period, whereas the
functions ¢(o(t)) (the phase detector’s output) and & ()
(“frequency”) are periodic in the usual sense.

Vo € R. (5)

Definition 1. We say a solution o, (t) of (1) is periodic if
there exist a number 7}, > 0 and integer I,, such that

o,(t+T,) =0,(t) +I,A, Vt. (6)
If I, = 0 the solution o,(t) is called a periodic solution
of the first kind. If I, # 0 it is called a periodic solution
of the second kind. The number 7T}, is the period and the
number w,, = %—” is the frequency of a periodic solution.

M
Equation (1) is a singular perturbation of the following
integro-differential Volterra equation (obtained as p = 0)
t
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In the recent paper Perkin et al. (2015), the conditions for

the absence of periodic solutions in systems (7) were ob-

tained. These conditions, employing the transfer function
+oo

Kolp) = —p ™+ [ 2@ mar pec) (8)
0
have the form of frequency-algebraic inequalities with
varying parameters. Below we extend the results of Perkin
et al. (2015) to singularly perturbed equations (1).

Let us reduce equation (1) to integro-differential Volterra
equation
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