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Abstract: It is well known that the concepts of controllability and differential controllability are
coincident for linear time-varying systems with analytic coefficients. In this note, we discuss the
difference between these concepts for linear periodic continuous-time systems with piecewise-
analytic coefficients. We propose the concept of differentially controllable subspace in order to
compare with the controllable subspace, and then, the formulae for computing the differentially
controllable subspace are derived in both integral and differential forms. Reachability and
differential reachability are also discussed in a similar way. The significance of assuming
piecewise-analytic coefficients for computing the differentially controllable subspace is explained
in detail by a counterexample to the previous work.
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1. INTRODUCTION

Controllability is a fundamental concept for characterizing
the effect of control input to the state variables. A state of
a linear time varying system is said to be controllable if the
state is transferred to the origin by an admissible control
input on a finite interval. A similar but different concept is
differential controllability. A state of a linear time varying
system is said to be differentially controllable if the state is
transferred to the origin by an admissible control input on
an arbitrary small interval[l]. It is well known that those
concepts are coincident when the coefficient matrices of
the linear time varying system are composed of analytic
functions[2]. Those concepts are still coincident when the
system is classified into a constant rank system [3]. But,
those concepts are not coincident when the system is
classified into a piecewise constant rank system [4].

In this note, we further discuss the difference between two
concepts. For simplicity, we restrict the class of coefficient
matrices to be periodic and piecewise-analytic. Because
the coefficient matrices are periodic, the dimension of the
controllable subspace is constant with respect to time.
Because the coeflicient matrices are piecewise-analytic, the
Taylor expansion of the coefficient matrices and the state
transition matrices are well-defined almost everywhere.
The concept of differentially controllable subspace is then
introduced in a similar way to the controllable subspace.
Hereafter, we study the properties of differentially con-
trollable subspace and compare them with those of the
controllable subspace. The reachable subspace and the dif-
ferential reachable subspace are also discussed in a similar
way.

We use the following notations. If the function P(t) is
periodic with a period T' > 0, i.e., P(t + T) = P(t) for
t € R, it is called T-periodic. The set of all piecewise

continuous functions from an interval N C R to R™**™
is denoted by CP¢(N,R™ ™). The set of all analytic
functions from an interval N C R to R™ ™ is denoted
by C¥(N,R»*™),

2. PRELIMINARIES

Consider the linear T-periodic continuous-time system

z=Alt)x + B(t)u, &:= Z—f, (1)
where x(t) € R™ is the state variable and wu(t) € R™ is
the control input. The coefficient matrices A(t) € R™*",
B(t) € R™*™ are supposed to be T-periodic and piecewise-
analytic, where the function is said to be analytic is
the convergence radius of the Taylor series expansion is
positive. A(t) and B(t) are supposed to be analytic on
open intervals D; = (d;, d;+1), where the interval [0,7") is
divided into [0,T) = [d1,d2) U - U [dg, dg11).

Let ®(s,t) denote the state transition matrix of & = A(t)z.
Because A(t) is analytic on D;, ®(s,t) is also analytic at
se€D;and t € D,.

Define a linear operator
Ly : C¥(D,R™™) — C¥(D,R"*™) as follows:

LAF(t) = S F(#) = AWF (1), )

where A € C¥(D,R™*") and F € C¥(D,R™*™) are
supposed to be analytic on an open interval D C R. Define
the k-th repetition of L 4 as follows:

LYF(t) = F(1), (3)
LYF(t) := LsF(t), (4)
LAF(t) == La(LE7 R (1), k=2,3,---. (5)

Define a linear subspace on D as follows:
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LF(t) ;= Tm B(t) + Im Lo B(t) + - --
+ ImLYB(t), k=01, (6)
LF(t) is nondecreasing with respect to k
Loty c L) c L)y c---, (7)
and dim £*(t) is also nondecreasing with respect to k.
Because dim £¥(t) is bounded by n, there exists a nonneg-
ative integer k* such that £F(t) = L£F"(t),k > k*. Define
L®(t) by L£2(t) := LF (t). £L>(t) is then formally given
by
LP(t)=ImB(t) + ImLaoB(t)+ - . (8)

3. SUBSPACE
3.1 Controllable subspace

The controllable subspace C(t) is defined as follows [5]:
Definition 1.

C(t) := U

s€[t,00)
{/: O(t, 7)B(T)u(t)dr : u € CP°([t, S]va)}

C(t) satisfies the following properties:
Lemma 2. [6] (i) C(¢) is given by

C(t) = Im W,(t,t +nT), t € R, (9)
where W, is the controllability Gramian given by

Wa(t,s) = /t "Bt 1) B(r)B(r) (¢, 1) Cdr.

(i) C(t) is P-invariant, i.e.,
C(t) = ®(t,s)C(s), t,s € R.

(iil) C(¢) is T-periodic, i.e.,
Clt)=C(t+T), teR.

(iv) The dimension of C(t) is constant, i.e.,
dimC(t) = dimC(0), ¢t € R.

3.2 Reachable subspace

The reachable subspace R(t) is defined as follows [5]:
Definition 3.

R(t) == U

pE(—o0,t]
{/pt ®(t, 7)B(r)u(r)dr : u € C*°([p, t],Rm)}

R(t) satisfies the following properties:
Lemma 4. [6] (i) R(t) is given by
R(t) = Im W,.(t —nT,t), t € R,
where W, is the controllability Gramian given by

W, (t,s) = /ts q)(s,T)B(T)B(T)TQ(S,T)TdT.

(if) R(t) is ®-invariant, i.e.,
R(t) = ®(t,s)R(s), t,s € R.

(iii) C(R) is T-periodic, i.e.,
R(t)=R(E+T), teR.

(iv) The dimension of R(t) is constant, i.e.,
dim R(t) = dim R(0), ¢t € R.

(16)
(17)

(18)

Moreover, it is shown that C(t) and R(t) are coincident for
linear periodic systems.
Lemma 5. [6]

C(t) = R(t), t € R. (19)

We note that C(¢) and R(t) are not coincident for linear
time-varying system other than periodic ones.

3.8 Differentially controllable subspace

To investigate the instantaneous control action, we focus
on the concept of differential controllability [1].
Definition 6. Given the state x(t) = x of the system (1)
at time t. The state o € R™ is said to be differentially
controllable at time ¢ if there exist s € [t,p) and u €
CPe([t, s], R™) satisfying

D(s,t)xo + /ts O(s,7)B(T)u(r)dr =0

for any p > ¢. The system (1) or the (A, B)-pair is said to
be differentially controllable if all states are differentially
controllable at time ¢.

In accordance with Definition 6, we introduce the differ-
entially controllable subspace as follows:

Definition 7. The set of all states which are differentially
controllable at time ¢ is denoted by

Ca(t) == ﬂ U

pE(t,+00) s€[t,p)

{/t B(t, ) B(r)u(r)dr : u € CP([t, s],Rm)} ,

and is called the differentially controllable subspace at
time ¢.

As shown in Eq. (9), C(t) is given by the image of W, (¢, t+
nT') defined on a finite interval (t,¢ + nT). In contrast,
Cq(t) is given by the image of W,(t,s) defined on an
infinitesimal interval (¢, s), where s > t is sufficiently close
to t. By taking the orthogonal complement of Cy4(t), C4(t)*
is computed by using ®(s,t) and B(t) as follows:
Proposition 8.
Ca(t)*t = ﬂ U Ker W,(t, s)
pE(t,+00) s€[t,p)
pE(t,+o0) s€(t,p)

{6 eR": TDB(t,1)B(r) = 0,7 € (t,5)} . (20)

Proof: In a similar way to compute C(¢), C4(t) is given by

)= () U mwets).
pE(t,+o0) s€[t,p)
Because W,(t,s) is symmetric, the first equal sign is
obtained. Because ¢TW.(t,5) = 0 and ¢T®(¢,7)B(1) =
0,7 € (t,s) are equivalent, the second equal sign is
obtained. O

We note that Eq. (20) requires integral calculations of
O(t,s) and W,(t,s) from A(t) and B(t), and therefore,
Eq. (20) can be taken as the integral form.

Equation (20) is valid for all ¢ € R. We obtain another
formula which is only valid on D; as follows:
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