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Abstract: Based on a nonlinear load-capacity model, the network evolution and controllability
evolution of scale-free networks under the cascading failures triggered by removing the highest-
load edge are simulated and discussed in this paper. It is shown by numerical simulations that
the controllability evolution is consistent with the average degree evolution rather than the
power law exponent evolution. Under the same network cost, it is found that the nonlinear
load-capacity model exhibits the stronger robustness of controllability when the initial power
law exponent of networks is small by comparing with the linear load-capacity model, while the
linear load-capacity model is of stronger robustness of controllability when the initial power law
exponent is large. Numerical results shows that high-load edges are becoming more critical to
the robustness of controllability with the increase of initial power law exponent, and the nearly
highest-load edges are becoming more critical with the increase of both initial average degree
and power law exponent.
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1. INTRODUCTION

In the past decades, great effort has been devoted to
understanding the dynamical processes and the interplay
between topology in various complex networks (Albert and
Barabadsi (2002), Newman (2003), Boccaletti et al. (2006),
Caldarelli (2007), Barabdsi and Albert (1999), Fortunato
(2010), Albert et al. (1999), Wang et al. (2015), Chen et al.
(2015a), Chen et al. (2015b)). Recently, many researchers
have focused on the mechanism of controllability of com-
plex networks. although most real complex networks are
driven by nonlinearity, in many aspects, the controllability
of various nonlinear systems is structurally similar to the
controllability of linear systems (Slotine et al. (1991)),
which prompts us to study complex networks with canoni-
cal linear, time-invariant dynamics. Consider a linear time-
invariant system:

& = Ax + Bu, (1)
where vector z = (z1,...,2n)T € RY is the state of
system (1) consisting of N nodes. Matrix A is the system’s
adjacent matrix describing links and interactions. B is
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the N x M input matrix (M < N) that identifies the
nodes controlled by external controllers. The input vector
u = (uy,...,upy)’ € RM imposed by the controllers
is used to control system (1). System (1) is said to be
controllable if and only if Kalman’s matrix C is full rank,
where C = (B, AB, A?B, ...AN~1B) (Kalman (1963)). In
order to fully control system (1) with a given system
matrix A, we should choose an appropriate B (indicates
the location of driver nodes) to guarantee the full rank
of matrix C. However, for the majority of real networks,
it is difficult to obtain exact link weights for matrix A.
Besides, the computation of rank(C) is also a formidable
task for large networks. To bypass the need of measuring
the link weights, the structural controllability proposed
by Lin (1974) is suitable to overcome our lack of the
cognition to the link weights. As we know, system (1) is
structurally controllable if it is possible to choose the right
non-zero weights in A and B such that matrix C has full
rank. Shields and Pearson (1975) proved that system (1)
is controllable for almost all set of link weights of A and B
other than a pathological set with zero measure. Further
research on exact controllability of any network structure,
directed or undirected, with or without link weights and
self-loops is studied by Yuan et al. (2013), which is based
on the maximum multiplicity of eigenvalue.
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Generally speaking, real complex networks contain unre-
liable components. For example, in critical infrastructure
and technological networks, some links may become non-
operational due to disasters or attacks (Solé et al. (2008)).
Although the robustness and resilience of networks have
been extensively investigated over the past decades (Mot-
ter and Lai (2002), Motter (2004), Wu et al. (2006),
Newman (2010), Cohen et al. (2000), Cohen et al. (2001)
and Jeong et al. (2000)), the robustness of controllability
for complex networks has not been sufficiently explored.
Wang and Sun (2010), Liu et al. (2011), Pu et al. (2012),
Ruths and Ruths (2013) and Nie et al. (2014) investigated
the robustness of network controllability under node (or
edge) attack and cascading failures based on a linear load-
capacity model (ML model) proposed by Motter and Lai
(2002). In the ML model, it is simply defined that the
capacity is linearly proportional to the load. However,
based on the analysis of real networks, Kim and Motter
(2008) found that relationship between the load and the
capacity shows a nonlinear behavior: the traffic fluctua-
tions on high-load elements is small, which means there is
a reduction of unoccupied capacity with the increase of the
edge load (smaller load-to-capacity ratio). The nonlinear
load-capacity relationship is contrasts with the default
assumption used in previous studies.

Therefore, in this paper, we study the controllability ro-
bustness of scale-free networks against cascading failures
based on a nonlinear load-capacity model. The rest of this
paper is organized as follows: In Section 2, a nonlinear
load-capacity model is introduced. Network evolution and
controllability evolution under cascading failures on BA
scale-free networks are numerically simulated and ana-
lyzed in Section 3, respectively. Finally, the conclusions
are drawn.

2. A NONLINEAR LOAD-CAPACITY MODEL

In load-capacity models, a fundamental assumption is that
at each time step, one unit of information is transmitted
along the shortest path between each pair of nodes. The
edge load is defined as edge betweenness centrality, i.e., the
load L;; of edge e;; is the amount of shortest paths going
through edge e;; in network. The capacity of an edge is the
largest load that the edge can bear, and the capacity H;;
of edge e;; is assigned according to its initial load. In the
ML model, capacity H;; of edge e;; is linearly proportional
to its initial load L, i.e.,

Hij = (1+ B)Lyj, (2)
where 8 > 0 is the tolerance parameter which denotes the
portion of additional capacity of edge e;;.

It is found that the removing of the highest-load edges
always triggers large scale cascading failures (Motter
(2004), Wu et al. (2006), Cohen et al. (2001)), which
change the topology of the networks, therefore, there is
a chance that the varying of unoccupied portion of nearly
highest-load edges affects the robustness of network con-
trollability. Thus, we introduce a nonlinear load-capacity
model (NL model):
L;;

Hij :Lij +6(1—5KZI) L%, (3)
where 0 < a < 1 and 0 < § < 1 decide the unoccupied
portion of capacities of high-load edges and nearly highest-
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Fig. 1. Two load-capacity models. The dotted line repre-
sents the function H;; = L;;, and parameter 3 = 600
for the ML and the NL models.

load edge, respectively, 3 > 0 denotes the unoccupied
portion of additional capacities of all edges, and L,q; =
max(L;;). When ¢ = 0, the NL model degenerates to the
model proposed by Dou et al. (2010). When o = 1 and
6 = 0, the NL model degenerates to the ML model. The
load-capacity relationships of the ML model and the NL
model are shown in Fig. 1, respectively. For the ML model,
the capacity is linearly proportional to the load (the blue
line is parallel to the dotted line), and the NL model
has a lager unoccupied portion of capacities on network
elements with smaller loads, which is closer to the load-
capacity relationship in real complex networks. Parameter
« defines the global speed of the capacity converging
to the load, and parameter § determines the capacities
of nearly highest-load edges without affecting the global
convergence speed. It is obvious that the larger §, the faster
the capacity converging to the load. The effect of adjusting
unoccupied portion of capacities of high-load edges and
nearly highest-load edges to the controllability will be
discussed in the section below by adjusting parameters «
and ¢, respectively.

For a network, each edge is assigned an initial load, and its
capacity is calculated by Equation (3). The edge capacity
is limited since it is restricted by the cost of networks,
where network cost e is defined as (Dou et al. (2010)):

N N

ij=1 ij=1

When one edge in the network is removed (especially the
one with the highest-load), the distribution of shortest
paths changes and the capacities of some edges may
become smaller than their loads. A new distribution of
edges loads arise after the removing of overloaded edges,
and the cascading failure stops until there is no overloaded
edge. It is found that the cascading failure of complex
networks can easily be triggered by the removing of
the highest-load edge (Crucitti et al. (2004)). Hence, we
consider the cascading failure caused by the removing of
the highest-load edge in this paper.
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