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1. INTRODUCTION

Large-scale systems usually involve time-delays. Further-
more, the time-delays in such a system may be distributed
(Niculescu (2001)). Such systems can in general be de-
scribed by functional vector differential equations involv-
ing a state vector (Hale and Verduyn-Lunel (1993)). When
the derivative of the state vector is not subject to any
time-delays, such systems are called as retarded time-delay
systems. There are, however, examples of systems when
the derivative of the state vector may also be subject to
time-delays. In the latter case, such systems are called as
neutral time-delay systems. It is, in general, more diffi-
cult to analyze and control neutral systems compared to
retarded systems (Niculescu (2001)).

Decomposition techniques are usually needed to analyze
large-scale systems or to design controllers for such sys-
tems. Many large-scale systems, such as interconnected
power systems (Siljak (1978)), freeway traffic regulation
systems (Isaksen and Payne (1973)), intelligent vehicle-
highway systems (Stankovié¢ et al. (2000)), large flexible
structures (Ozgiiner et al. (1988)), data-communication
networks (Ataglar and Iftar (1999)), and manufacturing
systems (Aybar and Iftar (2002)), however, may involve
subsystems which are loosely interconnected among them-
selves, but strongly interconnected through certain dy-
namics. The approach of overlapping decompositions has
first been introduced by Tkeda and Siljak (1980) to obtain
useful decompositions for such systems. The overlapping
decompositions is based on the inclusion principle (Ikeda
et al. (1984)). Although the idea of overlapping decompo-
sitions go back to more than three decades, consideration
of it for time-delay systems has rather been recent (e.g.,
Bakule et al. (2005a,b); Bakule and Rossell (2008); iftar
(2008)). Furthermore, most of this literature was restricted
to systems with discrete time-delays. To the author’s best
knowledge, systems with distributed time-delay have first
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been considered by Iftar (2014), where the inclusion prin-
ciple for linear time-invariant (LTT) distributed-time-delay
systems has been defined and overlapping decomposition
of such systems have been considered. Controller and
observer design using overlapping decompositions were
also discussed by Iftar (2014). The results of Iftar (2014),
however, were restricted to retarded time-delay systems.
Therefore, in this work, we extend the results of Iftar
(2014) to neutral LTT distributed-time-delay systems. The
inclusion principle for such systems is defined in Section 2.
An important special case of inclusion, namely restriction,
is defined in Section 3. Overlapping decompositions and
expansions and controller design are discussed in Section 4.
Finally, some concluding remarks are given in Section 5.

Throughout the paper, for positive integers k£ and I, R
and R¥*! denote the spaces of, respectively, k-dimensional
real vectors and k x [-dimensional real matrices. I, denotes
the k x k-dimensional identity matrix. 0 may denote either
the scalar zero, a zero vector, a zero matrix, or a matrix
function which is identically zero. For real numbers a and
b, [a,b] :=={p|a <p<b}and [a,b) :=={p|a < p < b}
For a complex number s, Re(s) is the real part of s. Finally,
for a vector function z(-), z(-) is the derivative of x(-).

2. INCLUSION

In this section, we extend the inclusion principle to LTI
neutral systems with distributed time-delay, which can be
described as:

0
(1) + / E(0)i(t + 0)do
o
:/(A(Q)x(t+9)+B(0)u(t+6))d9 (1)

y(t) = / C(0)a(t + 0)do
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where z(t) € R™, u(t) € RP, and y(t) € R? are,
respectively, the state, the input, and the output vectors
at time ¢, 7 is the maximum time-delay in the system,
and E() : [-7,0] = R™" A() : [-7,0] — R™*",
B(:) : [-7,0) = R™P? and C(-) : [-7,0] — RIY*™ are
bounded matrix functions, except that they may involve
Dirac delta terms. The inclusion of Dirac delta terms in
those matrices allow the representation of discrete time-
delays besides distributed time-delays. E(0), however, is
assumed to be bounded, i.e., E(§) can have Dirac delta
terms §(0 — h), for h € [—7,0), but not for h = 0. We will
denote the system described by (1) by ¥, and also consider
another LTI neutral system with distributed time-delay, to
be denoted by f], described as:

0
&(t) + / E(0)Z(t + 0)do

0
:/(A(H):i(t+0)+3(0)ﬂ(t+0)) o (2
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where, #(t) € R", a(t) € RP, and §(t) € R? are,
respectively, the state, the input, and the output vectors at
time ¢ and E(.) : [-7,0] — R?*" A(.) : [-7,0] — R™*7",
B()) : [-7,0] = R™® and C(-) : [-7,0] = RZ*™ are
bounded matrix functions, except that they may involve
Dirac delta terms. As for E(0), however, £(0) is assumed
to be bounded. We note that, although both ¥ and by
are assumed to have the same maximum time-delay, T,
this is no loss of generality, since, if one system has a
longer maximum time-delay, the matrix functions of the
other system can be extended as zero matrices down to the
common maximum time-delay. Furthermore, it is assumed

that the input, as well as output, vectors of ¥ and of )
have the same dimensions (p and ¢ respectively). However,

the state vector of ¥ has a larger dimension than that of

3; i.e., 7 > n. Finally, the initial conditions for ¥ and )y
are assumed to be respectively given as:

2(0) = ¢(0) #(0) = 9(0) ,

for some functions ¢ : [—7,0] — R" and ¢ : [-7,0] — R™.

and 6el[-7,0, (3)

Unlike retarded time-delay systems (which were discussed
in Iftar (2014)), neutral time-delay systems may have in-
finitely many modes in a given right-half plane (Niculescu
(2001)). Tt is, however, known that (Hale and Verduyn-
Lunel (1993)), for any p > 0, the system X has only
finitely many modes with real part greater than or equal
to u(X) + p, where

0
w(X) := sup < Re(s) | det In+/E(9)689d0 =0, .(4)

—T

Similarly, for any p > 0, the system S has only finitely
many modes with real part greater than or equal to

w(X) + p, where p(X) is defined as in (4) with I, and

E(0) respectively replaced by I and E(6). It is known
that a system of the form ¥ can not be stabilized by a
proper controller unless p(X) < 0 (Loiseau et al. (2002)).
Therefore, in the sequel, we assume that p(X) < 0 and

u(®) < 0.
Now, we present the following definition, which is an

extension of the definition in Iftar (2014) to the case of
neutral systems.

Definition 1: 3 includes ¥ and ¥ is included by 3 if there
exist a full row-rank matrix U € R™*" and a full column-
rank matrix V € R"*" with UV = I,,, such that for all
@(+) and for all u(-), the choice

o(0) =Ved), 0€[-7,0] (5)
and
a(t) =wu(t), t=z-t (6)
implies
a(t) =UL(t), t>-7 (7)
and
y(t) =4(t), t=0. (8)

When 3 includes ¥, the two systems have the same
input-output relation and some stability properties are
preserved. First, let us present the following definitions,
which are borrowed from Iftar (2014):

Definition 2: Two systems with the same number of
inputs and outputs, such as ¥ and 3, are said to have
the same input-output map if, for any input, they produce
the same output in response to the same input when their
initial conditions are zero.

Definition 3: A system, such as ¥ or ¥, is said to
be bounded-input bounded-output (BIBO) stable if, in re-
sponse to any bounded input, it produces a bounded
output when its initial condition is zero.

Definition 4: A system, such as ¥ or 3, is said to be
(asymptotically) stable if, for any bounded initial condi-
tion, its state remains bounded (and asymptotically goes
to zero as time goes to infinity) when its input is zero.

The following theorems show that, when 3 includes Y., the
two systems have the same input-output map and certain
stability properties are preserved between them.

Theorem 1: If 3 includes ¥, then ¥ and ¥ have the same
input-output map.

Proof: When ¥ and ¥ have both zero intial conditions,
i.e., when ¢(0) = 0 and ¢(0) = 0, V0 € [—7,0], then (5)
is satisfied. Furthermore, when the two systems have the

same input, then (6) is satisfied. Then, since 3 includes ¥,
(8) is also satisfied, which is the desired result. a

Theorem 2: If % includes ¥, then ¥ is BIBO stable if and
only if ¥ is BIBO stable.

Proof: Follows from Definitions 2 & 3 and Theorem 1. O
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