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a b s t r a c t 

Economic model predictive control (EMPC) is a predictive feedback control methodology that unifies eco- 

nomic optimization and control. EMPC uses a stage cost that reflects the process/system economics. In 

general, the stage cost used is not a quadratic stage cost like that typically used in standard tracking 

model predictive control. In this paper, a brief overview of EMPC methods is provided. In particular, the 

role of constraints imposed in the optimization problem of EMPC for feasibility, closed-loop stability, and 

closed-loop performance is explained. Three main types of constraints are considered including termi- 

nal equality constraints, terminal region constraints, and constraints designed via Lyapunov-based tech- 

niques. The paper closes with a well-known chemical engineering example (a non-isothermal CSTR with 

a second-order reaction) to illustrate the effectiveness of time-varying operation to improve closed-loop 

economic performance compared to steady-state operation and to demonstrate the impact of economi- 

cally motivated constraints on optimal operation. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Economic model predictive control (EMPC) has attracted signif- 

icant attention and research over the last five years. This interest is 

a result of the ability of EMPC to integrate optimization of process 

economics with process control by incorporating a general stage 

cost function in the optimization problem and allowing for con- 

sistently dynamic (time-varying) process operation without requir- 

ing the process to settle at a steady-state or reference trajectory 

( Amrit, Rawlings, and Angeli, 2011; Angeli, Amrit, and Rawlings, 

2012; Engell, 2007; Heidarinejad, Liu, and Christofides, 2012a; Hel- 

big, Abel, and Marquardt, 20 0 0; Huang, Harinath, and Biegler, 

2011; Rawlings and Amrit, 2009 ; see, also, the reviews Ellis, Du- 

rand, and Christofides, 2014; Rawlings, Angeli, and Bates, 2012 for 

a more complete overview and reference list of the EMPC litera- 

ture). In contrast to tracking model predictive control (MPC), which 

usually incorporates a quadratic stage cost, the stage cost of EMPC 

is chosen as a direct or indirect measure of the process/system 

economic performance. As a result of the general stage cost used, 

EMPC may force a process to operate in a time-varying manner 

to optimize the economics. The rigorous design of EMPC schemes 

that operate large-scale processes in a dynamically optimal fashion 
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while maintaining stability of the closed-loop system is challenging 

because traditional stability analysis concepts, such as asymptotic 

stability of a steady-state for a process under a given controller, 

may be inapplicable to a closed-loop system under EMPC. 

To address the three key fundamental issues of feasibility, sta- 

bility, and economic performance, constraints are often employed 

in the EMPC problem formulation. To this end, many EMPC for- 

mulations have been proposed encompassing theoretical analysis 

of closed-loop properties (e.g., Alessandretti, Aguiar, & Jones, 2014; 

Amrit et al., 2011; Angeli et al., 2012; Bayer, Müller, & Allgöwer, 

2014; Faulwasser, Korda, Jones, & Bonvin, 2014; Ferramosca, Rawl- 

ings, Limon, & Camacho, 2010; Grüne, 2013; Grüne & Stieler, 2014; 

Heidarinejad et al., 2012a; Huang, Biegler, & Harinath, 2012; Huang 

et al., 2011; Limon, Pereira, Muñoz de la Peña, Alamo, & Grosso, 

2014; Müller, Angeli, & Allgöwer, 2014a; Zavala, 2015 ), optimiza- 

tion and computational issues (e.g., Biegler, Yang, & Fischer, 2015; 

Kadam & Marquardt, 2007; Würth & Marquardt, 2014 ), and im- 

plementation and applications (e.g., Ellis & Christofides, 2015b; 

Grosso, Ocampo-Martinez, Puig, Limon, & Pereira, 2014; Heidarine- 

jad, Liu, & Christofides, 2012b; Omell & Chmielewski, 2013; Zhang, 

Liu, & Liu, 2014 ). 

This article describes the role and implications of constraints 

used in EMPC. It is an extended version of the work ( Ellis & 

Christofides, 2015a ). Owing to space limitations, certain techni- 

cal assumptions are omitted and statements of the results are 

summarized. 
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Notation: | · | denotes the Euclidean norm of a vector. The sym- 

bol S ( �) denotes the family of piecewise constant functions with 

period � > 0. A continuous function β : R 

n → R is positive defi- 

nite if β(0) = 0 and β( x ) > 0 for all x � = 0. A continuous function 

α: [0, a ) → [0, ∞ ) belongs to class K if it strictly increasing and 

α(0) = 0 . 

1.1. Class of nonlinear systems 

The class of systems considered is described by the system of 

nonlinear ordinary differential equations (ODEs): 

˙ x (t) = f (x (t ) , u (t ) , w (t )) (1) 

where x (t) ∈ X ⊂ R 

n denotes the state vector, u (t) ∈ U ⊂ R 

m de- 

notes the manipulated (control) input vector, and w (t) ∈ W ⊂ R 

l 

denotes the disturbance vector. The set of admissible input values 

U is compact, and the disturbance vector is bounded in the set 

W := { w ∈ R 

l || w | ≤ θ} where θ > 0 bounds the norm of the dis- 

turbance vector. The vector function f : X × U × W → X is locally 

Lipschitz on X × U × W . A state measurement is synchronously 

sampled at sampling instances denoted as t k := k � where k ∈ I ≥0 

and � > 0 is the sampling period (the initial time is taken to 

be zero). The assumption of state feedback is standard owing to 

the fact that the separation principle does not generally hold for 

nonlinear systems. Nevertheless, some rigorous output feedback 

implementations of EMPC exist (e.g., Heidarinejad et al., 2012b; 

Zhang et al., 2014 ). The system (1) is equipped with a continuous 

function l e : X × U → R , which reflects the instantaneous pro- 

cess/system economics. The function l e ( ·, ·) will be used as a stage 

cost in a model predictive control (MPC) framework and will be 

referred to as the economic stage cost. The system (1) may have 

additional constraints other than the input and state constraints. 

Collecting all the constraints including the input, state, and ad- 

ditional constraints, the constraints may be written generally as 

static constraints: 

g s (x, u ) ≤ 0 (2) 

where g s : X × U → R 

n s and as dynamic constraints (e.g., average 

constraints): ∫ t d 

0 

g d (x (t) , u (t)) dt ≤ 0 (3) 

where g d : X × U → R 

n d and t d is the time horizon that the con- 

straint is imposed. The dynamic constraints are often motivated by 

economic considerations. The economically optimal steady-state 

and steady-state input pair is: 

(x ∗s , u 

∗
s ) = arg min 

(x s ,u s ) 

⎧ ⎨ 

⎩ 

l e (x s , u s ) : 

f (x s , u s , 0) = 0 

g s (x s , u s ) ≤ 0 , 

g d (x s , u s ) ≤ 0 

⎫ ⎬ 

⎭ 

. (4) 

With the notation above, the optimal steady-state pair (x ∗s , u ∗s ) 
is assumed to be unique. If the minimizing pair is not unique, 

let (x ∗s , u ∗s ) denote one of the minimizing steady-state pairs. The 

optimal steady-state is taken to be the origin of the unforced 

system ( f (0 , 0 , 0) = 0 ). 

Remark 1. Time-varying economic considerations such as cus- 

tomer demand changes, dynamic energy pricing, and variable 

feedstock quality may lead to explicitly time-varying economic 

stage costs as well as time-dependent economic-oriented con- 

straints. While economic stage costs that are not explicitly time- 

dependent are considered here, some EMPC methodologies ex- 

ist for handling some issues related to time-varying economic 

stage costs such as a Lyapunov-based EMPC formulation that al- 

lows for changing regions of operation as the economic stage 

cost changes with time while guaranteeing closed-loop stability 

( Ellis & Christofides, 2014a ). Another potentially useful concept 

that may help enable EMPC to handle time-varying economic stage 

costs is the use of a generalized terminal constraint or self-tuning 

terminal region and terminal cost (e.g., Fagiano & Teel, 2013; Fer- 

ramosca et al., 2010; Müller et al., 2014a ). 

2. EMPC schemes: feasibility, closed-loop stability, and 

performance 

Economic model predictive control is an MPC method that uses 

the economic stage cost in its formulation. The EMPC problem, 

with a finite-time prediction horizon, can be broadly characterized 

by the following optimal control problem (OCP): 

min 

u (·) ∈ S(�) 

∫ t k + N 

t k 

l e ( ̃  x (t) , u (t)) dt + V f ( ̃  x (t k + N )) (5a) 

s.t. ˙ ˜ x (t) = f ( ̃  x (t ) , u (t ) , 0) (5b) 

˜ x (t k ) = x (t k ) (5c) 

g s ( ̃  x (t) , u (t)) ≤ 0 , ∀ t ∈ [ t k , t k + N ] (5d) 

∫ t k + N 

t k 

g d ( ̃  x (t) , u (t)) dt ≤ 0 (5e) 

where the decision variable of the optimization problem is the 

piecewise constant input trajectory over the prediction horizon 

(i.e., the time interval [ t k , t k + N ) ) and ˜ x denotes the predicted state 

trajectory over the prediction horizon. Higher order control pa- 

rameterizations may also be considered. Nevertheless, sample-and- 

hold (i.e., zeroth-order hold) implementation of controls is one of 

the most commonly employed control parameterizations (i.e., u ( ·) 
∈ S ( �) as in (5a) ). 

The cost functional (5a) consists of the economic stage cost 

with a terminal cost/penalty V f : X → R . The nominal dynamic 

model (5b) is used to predict the future evolution of the system 

and is initialized with a state measurement (5c) . When available, 

disturbance estimates or predictions may be incorporated in the 

model (5b) . The constraints (5d) and (5e) represent the system 

constraints which may include input, state, mixed state and in- 

put, economic, and stability constraints. The constraint (5e) may be 

time-varying (i.e., formulated for the sampling time t k , so that the 

constraint (3) is satisfied over the desired operating interval). With 

slight abuse of notation, (5e) is not necessarily the same as (3) . For 

the remainder of this section, the dynamic constraints are dropped 

and only EMPC schemes of the form (5a) –(5d) are considered, ex- 

cept for a brief discussion of the impact of dynamic constraints 

on the trajectories of EMPC with input rate of change constraints. 

Thus, the constraint set is Z := { (x, u ) : x ∈ X , u ∈ U , g s (x, u ) ≤ 0 } ⊆
X × U and Z is assumed to be compact. 

Like tracking MPC, EMPC is typically implemented with a re- 

ceding horizon implementation to better approximate the infinite 

horizon solution and to ensure robustness of the control solution 

to disturbances and open-loop instabilities. At a sampling time t k , 

the EMPC receives a state measurement, which is used to initialize 

the model (5b) . The OCP (5) is solved on-line for a (local) optimal 

piecewise input trajectory, denoted by u ∗( t | t k ) for t ∈ [ t k , t k + N ) . The 

control action computed for the first sampling period of the pre- 

diction horizon, denoted as u ∗( t k | t k ), is sent to the control actuators 

to be implemented over the sampling period from t k to t k +1 (i.e., 

sample-and-hold implementation). At the next sampling time, the 

OCP (5) is re-solved after receiving a new state measurement and 

by shifting the prediction horizon into the future by one sampling 

period. 

EMPC, which consists of the on-line solution of the OCP 

(5) along with a receding horizon implementation, results in an 

implicit state feedback law u (t) = κ(x (t k )) for t ∈ [ t k , t k +1 ) . From 
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