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a b s t r a c t

Historically, the study of risk-sensitive criteria has focused on their normative applications — i.e., what
should be done. The classic example is expected utility functions which produce deterministic policies.
More recently, the literature on dynamic coherent risk measures has broadened the choices for risk-
sensitive performance evaluation. However, coherent risk measures must be convex. This paper presents
an alternative to both the expected utility and coherent risk measure approaches. This new approach,
inspired by cumulative prospect theory (CPT), is nonconvex and has substantial empirical evidence
supporting its descriptive power for human decisions, i.e., what is actually done. A key unique feature
of the CPT-based approach, essential for modeling human decisions, is probabilistic distortion. Hence,
CPT should be used instead of both expected utility and coherent risk measures when modeling human
decisions, which requires a higher level of expressiveness than allowed by previous work. In addition,
although both coherent risk measures and CPT produce randomized policies, which are more robust
against inaccurate probabilistic descriptions of systems, CPT generates policies that are significantly
different from those of coherent risk measures.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic programming, introduced by Bellman (1952), has
been the subject of intense research in the past decades. Dynamic
optimization problems modeled by controlled Markov processes
and solved via dynamic programming are commonly referred to as
Markov decision processes (MDPs).

An important class of risk-sensitive criteria is the class of co-
herent risk measures, which are convex risk measures with the
additional property of positive homogeneity (see Föllmer & Schied,
2008, Def. 2.3). Prominent examples include mean–semideviation
and conditional value-at-risk (Artzner, Delbaen, Eber, & Heath,
1999; Delbaen & Hochschule, 2002). Recently, dynamic coher-
ent risk measures have received much attention in the literature
(Cheridito, Delbaen, & Kupper, 2004; Riedel, 2004). In particular,
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Ruszczyński in Ruszczyński (2010) concludes that time-consistent
coherent risk measures (Ruszczyński & Shapiro, 2006) satisfy dy-
namic programming equations and are suitable for solving the
dynamic optimization problem.

In problems involving a human decision maker, it is desir-
able to use criteria that are beyond expected utility and coherent
risk measures. A well-known example of a non-coherent perfor-
mance measure is suggested by Tversky and Kahneman in their
cumulative prospect theory (CPT) (Tversky & Kahneman, 1992).
Unlike both expected utility and coherent risk measures, which
are normative approaches, CPT-based criteria have risen from
the search for a powerful descriptive model for human decision
making. Their ability to capture human decision dynamics under
uncertainty (e.g., lotteries) has strong empirical support (Wakker,
2010). Although CPT had its beginning in the 1990s, its incor-
poration into dynamic systems is still nascent. Recently, He and
Zhou (2011) have studied a portfolio choice problem using a CPT-
based approach. The problem maximizes the terminal wealth of
a self-financing portfolio, a constraint on the action space of the
MDP, driven by a financial market that is uncontrollable from
the perspective of the investor (see He & Zhou, 2011, Eq. 3).
These results become more difficult, if not impossible, to obtain
if these assumptions are eliminated. The motivation of this paper
is to widen the application of CPT-based criteria to more general
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dynamic problems, paying attention to the structure of optimal
policies obtained. The finite-horizon case was investigated in Lin
and Marcus (2013).

1.1. Generalizability and challenges

In addition to CPT’s ability to model human decisions and pro-
vide robust policies, it also generalizes both the expected utility
and coherent riskmeasure approaches. LetX be a Bernoulli random
variable that takes the value 1 with probability p and 0 otherwise.
Since E [u (X)] = pu(1), its expected utility is always linear in p.
Using a typical CPT weighting function pδ

(pδ+(1−p)δ)
1
δ

, when δ = 1,

the linear case is recovered. Convex risk measures can also be
recovered with appropriate weighting functions.

The expressiveness of CPT induced by probability distortion is
also the source of its greatest technical challenge: in particular, the
nonconvexity of the resulting risk measure; this is indeed a stark
contrast to both the expected utility and coherent risk measures.
The reason why previous work in this area has insisted on the
convexity of the riskmeasure is because of the diversification prin-
ciple: the fact that a portfolio is less risky than its individual parts.
While this constraint makes sense when asking what a rational
agent should do, it falls short whenwe are trying tomodel the way
humans make decisions.

The paper is organized as follows. In Section 2, we introduce
cumulative prospect theory and demonstrate the properties of
CPT-based decisions. In Section 3, CPT-based criteria are applied
to general dynamic problems. Our focus is on proving the suitabil-
ity of dynamic programming for solving CPT-based risk-sensitive
problems. In particular, we are interested in the case of discounted
and transient infinite-horizon problems. Our proof strategy and
conclusionhavemanyparallelswith that of Çavuş andRuszczyński
(2014).

2. Background

2.1. Cumulative prospect theory (CPT)

Prospect theory was suggested in the 1970s by Kahneman and
Tversky (1979). They were unsatisfied with the theory and sug-
gested its improved version, cumulative prospect theory (CPT), in
the 1990s (Tversky&Kahneman, 1992). CPT asserts that the human
decision making process can be modeled by a criterion with the
following characteristics: (1) The utility function has a reference
point against which gains and losses are measured; (2) The utility
function is concave on gains and convex on losses (i.e., horizontal S-
shape); (3) A probability weighting function (cf. Definition 1) that
transforms the distribution of a probability measure such that a
small probability is inflated and a large probability is deflated.

Definition 1. A probability weighting function, w, is a monotoni-
cally non-decreasing continuous function from [0, 1] to [0, 1] with
w (0) = 0 and w (1) = 1.

Let Z be a real random variable defined on an appropriate proba-
bility space (Ω,F, P); then its CPT value is calculated according to
the equation

ρ (Z) =

∫
∞

0
w+

(
P
(
u+

(
(Z − B)+

)
> z

))
dz

−

∫
∞

0
w−

(
P
(
u−

(
(Z − B)−

)
> z

))
dz, (1)

where u+, u− : R+
→ R+ are utility functions, w+, w− are

probability weighting functions, and B is a random variable. B is
interpreted as the benchmark against which the outcomes are

compared. In addition, thenotations (·)+ and (·)− denotemax (·, 0)
and -min (·, 0) , respectively. Appropriate integrability assump-
tions are assumed.

3. Dynamic programming

In this section, CPT-based criteria will be analyzed in a gen-
eral dynamic setting. The standard expected value case is time-
consistent and canbe rewritten as E [g(x0, a0, δ0) + E [g (x1, a1, δ1)
+ · · · |x1] |x0] where xk, ak, δk are the state, control and disturbance
at time k. Here, the system evolves according to the dynamics
xk+1 = f (xk, ak, δk), and g (x, a, δ) is the per-step cost for taking
action a at state x under disturbance δ.

We are interested in nonempty Borel spaces X and A of states
and controls such that for each x ∈ X there is a nonempty feasible
control Borel set A (x) ⊂ A. We denote the set of probability
measures over A equipped with the Prohorov metric by P (A). We
denote by S the set of all measurable functions µ : X → P (A)

satisfying µ (x) ∈ P (A (x)) , ∀x ∈ X , which we refer to as
policies. The nonempty Borel space of disturbances is denoted by
∆, and given a state-action pair (xk, ak) ∈ X × A, an element
δk ∈ ∆ (xk, ak) ⊂ ∆ drives the system to its next state through
a measurable function f : X × A × ∆ → X by xk+1 = f (xk, ak, δk).
At each time k, a per-step cost is accumulated and denoted by a
measurable function g : X × A × ∆ → R. The stochastic kernel
P (·|x, a) is defined over ∆ (x, a). Furthermore, we denote both the
realization and the random variable disturbance at time k by δk.
We denote by R (X) the set of real-valued measurable functions
J : X → R. A nonstationary Markov policy is denoted by π =

{µ0, µ1, µ2, . . . } , where µk ∈ S and Π denotes the set of all
feasible non-stationary Markov policies.

Given an element J̄ ∈ R (X), we minimize the cost over all non-
stationary Markov policies, i.e.,

J∗ (x) = inf
π∈Π

Jπ (x) , where

Jπ (x) = lim sup
k→∞

(
Tµ0Tµ1Tµ2 · · · Tµk J̄

)
(x) , (2)

for all x ∈ X, and Tµ : R (X) → R (X) is a problem dependent
operator.We define amappingH : X×P (A)×R (X) → R such that
for each policy µ ∈ S it satisfies

(
TµJ
)
(x) = H (x, µ (x) , J) , ∀x ∈

X . We define the operator T by (TJ) (x) = infa∈P(A(x))H (x, a, J) =

infµ∈S
(
TµJ
)
(x) , ∀x ∈ X .

Eq. (2) highlights the nested operatormapping formof dynamic
programming, which enables the application of Bertsekas’s ab-
stract dynamic programming (Bertsekas, 2013). Hence, the prob-
lem simplifies into proving properties of the H operator. Note that
Eq. (2) is also the objective function for time-consistent coherent
risk measures, albeit with a different class of H operators. We
will analyze two infinite horizon problems, namely discounted
and transient, using Eq. (2). For both cases, our objective is to
satisfy the monotonicity and contraction assumptions in abstract
dynamic programming (Bertsekas, 2013), which will yield the
strongest results for dynamic programming: value and policy it-
eration converge to a unique value function and an optimal policy
can be attained. Furthermore, according to Prop. 2.1.2 of Bertsekas
(2013), such a value function attained by the optimal policy can be
approximated within arbitrary accuracy by a stationary policy. We
reiterate below the monotonicity and contraction assumptions for
the reader’s convenience (see Bertsekas, 2013, Assumptions 2.1.1
and 2.1.2).

Assumption 2 (Monotonicity). If J, J ′ ∈ R (X) and J ≤ J ′, then
H (x, a, J) ≤ H(x, a, J ′), ∀x ∈ X, a ∈ P (A (x)) .
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