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1. INTRODUCTION

The problem of state estimation is of quite general in-
terest for both modern control schemes (see, e.g., Krstic
and Smyshlyaev (2008) and Meurer and Kugi (2009)) as
well as process monitoring and fault detection purposes
(e.g., Aamo et al.). Since most technical processes exhibit
some kind of nonlinear behaviour, the observer design for
such systems is of high practical interest. While several
solutions do exist for lumped-parameter systems (LPSs),
the results are rather scarce for nonlinear distributed-
parameter systems (DPSs) (e.g., for Volterra nonlinearities
see Vazquez and Krstic (2008a,b)).

Thus, apart from the classical early-lumping approach,
the observer error dynamics is typically simplified by
singular perturbation theory (see, e.g., Vazquez and Krstic
(2006)) or by linearization. The latter approach leads
to so-called extended Luenberger observers (see Meurer
(2013) and Jadachowski et al. (2014)) whose linear but
time-varying error dynamics needs to be stabilized by a
suitable method. Choosing the backstepping method (see
Krstic and Smyshlyaev (2008)) essentially boils down to
determine the integral kernel of a Volterra (backstepping)
transformation.

This contribution addresses extended Luenberger ob-
servers for a class of semilinear hyperbolic partial integro-
differential equations (PIDEs) constituting a nonlinear
version of the class introduced in Krstic and Smyshlyaev
(2008). Motivated by results on linear time-varying PI-
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DEs recently presented in Deutschmann et al. (2016), we
locally stabilize the semilinear observer error dynamics by
using the backstepping method. Since the determination
of the time-varying kernel function is computationally
very expensive, an efficient algorithm along the lines of
Jadachowski et al. (2012) is proposed.

The remainder of this paper is structured as follows:
First, the extended Luenberger observer is defined and
the linearized observer error dynamics are formulated in
Section 2. Then, in Section 3, the linearized error system
is stabilized utilizing a modified backstepping method to
prescribe a desired target dynamics (see Deutschmann
et al. (2016)). Section 4 presents the proposed algorithm
to solve the kernel equations. In Section 5, the numerical
algorithm is tested and an extended Luenberger observer
is applied to plants with multiple equilibrium points.

2. EXTENDED LUENBERGER OBSERVER

In this paper semilinear plants of the type

xt(z, t) =xz(z, t) + a(x(z, t), z, t) + g(x(0, t), z, t)

+

∫ z

0

f(z, ξ, t) γ(ξ, x(ξ, t)) dξ
(1a)

with boundary and initial conditions

x(z, 0) = x0(z) (1b)

x(1, t) = u(t) (1c)

are considered. Here, u(t) represents an external input and
the system output is given on the opposite boundary

y(t) = x(0, t). (1d)

The system (1) is defined on the domain (z, t) ∈ Ω =
(0, 1)×R+. The functions a, g, f and γ are supposed to be
continuous in all variables and continuously differentiable
in x and the input u(t) is at least piece-wise continuous.
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Assumption 1. It is assumed that there exists a sufficiently
smooth solution to the system (1).

An extended Luenberger observer (cf. Meurer (2013)) for
(1) can be constructed in the form

x̂t(z, t) = x̂z(z, t) + a(x̂(z, t), z, t) + g(x̂(0, t), z, t)

+ p(z, t)(y(t)− ŷ(t)) +

∫ z

0

f(z, ξ, t) γ(ξ, x̂(ξ, t)) dξ
(2a)

with the observer’s boundary and initial conditions

x̂(z, 0) = x̂0(z) (2b)

x̂(1, t) = u(t) (2c)

and the output
ŷ(t) = x̂(0, t). (2d)

The dynamics of the observation error e(z, t) = x(z, t) −
x̂(z, t) can be written as

et(z, t) = ez(z, t) + a(x̂+ e, z, t)− a(x̂, z, t)− p(z, t)e(0, t)

+ g(x̂(0, t) + e(0, t), z, t)− g(x̂(0, t), z, t)

+ (F (x̂+ e))(z, t)− (F x̂)(z, t) (3)

using (1) and (2) and introducing the nonlinear Volterra
operator F : L2([0, 1]) → L2([0, 1]) with

(F x)(z, t) =

∫ z

0

f(z, ξ, t) γ
(
ξ, x(ξ, t)

)
dξ. (4)

It can be shown that its Fréchet derivative is given by

(DF (x)χ)(z, t) =

∫ z

0

f(z, ξ, t) γx(ξ, x(ξ, t))χ(ξ, t) dξ. (5)

Thus, assuming the observation error e(z, t) to be rela-
tively small, the approximations

a(x̂+ e, z, t) ≈ a(x̂, z, t) + ax(x̂, z, t) e (6)

g(x̂+ e, z, t) ≈ g(x̂, z, t) + gx(x̂, z, t) e (7)

(F (x̂+ e))(z, t) ≈ (F x̂)(z, t) + (DF (x̂) e)(z, t), (8)

can be used to linearize the semilinear error dynamics (3)
around the current state estimate x̂(z, t) yielding

et(z, t) =ez(z, t) + ã(z, t)e(z, t) + p̃(z, t)e(0, t)

+

∫ z

0

f̃(z, ξ, t) e(ξ, t) dξ
(9)

with

ã(z, t) = ax(x̂(z, t), z, t) (10a)

p̃(z, t) = gx(x̂(0, t), z, t)− p(z, t) (10b)

f̃(z, ξ, t) = f(z, ξ, t) γx(ξ, x̂(ξ, t)). (10c)

We may now proceed to stabilize the linearized error
dynamics (9) by using the backstepping method.

3. LOCAL STABILIZATION OF THE ERROR
DYNAMICS

Due to (10), the stabilization of the linearized error dy-
namics constitutes a time-varying problem presented re-
cently in Deutschmann et al. (2016). Accordingly, to map
(9) onto a predefined target system

wt(z, t) = wz(z, t)−µ(z)w(z, t)−
∫ z

0

h(z, ξ)w(ξ, t)dξ (11)

w(1, t) = 0 (12)

with the design parameters µ(z) and h(z, ξ), a modified
backstepping transformation

e(z, t) = α(z, t)w(z, t)−
∫ z

0

k(z, y, t)w(y, t) dy (13)

with the auxiliary function α(z, t) and the integral kernel
k(z, y, t) is used.

The target system (11) is exponentially stable if

µinf − hsup > 0 (14)

where

µinf = inf
z∈[0,1]

µ(z) (15a)

hsup = sup
(z,y)∈T

|h(z, y)| (15b)

with T = {(z, y) ∈ R2|0 < y < z < 1}. The norm
‖w(z, t)‖L2 is then bounded by

‖w(z, t)‖L2 ≤ exp[−(µinf − hsup) t ] ‖w(z, 0)‖L2 . (16)

Differentiating (13) with respect to z and t and insert-
ing the results into (9) yields the set of equations (cf.
Deutschmann et al. (2016))

kz(z, y, t) + ky(z, y, t)− kt(z, y, t) = −β(z, y, t)k(z, y, t)

+ α(z, t)h(z, y) + α(y, t)f̃(z, y, t)

−
∫ z

y

k(z, ξ, t)h(ξ, y) + f̃(z, ξ, t)k(ξ, y, t) dξ (17a)

αt(z, t) = αz(z, t) + β(z, z, t)α(z, t) (17b)

k(1, y, t) = 0 (17c)

with β(z, y, t) = ã(z, t) + µ(y). A boundary condition for
α(z, t) compatible with (17b) is arbitrarily chosen to be

α(1, t) = 1. (17d)

The desired observer gain p(z, t) is given by

p(z, t) = gx(x̂(z, t), z, t)−
1

α(0, t)
k(z, 0, t). (17e)

Remark 1. The kernel equations (17) are implicitly cou-
pled to the observer (2) by the definitions (10). Analyzing
this coupling is still an open problem (cf. Meurer (2013)).
It is therefore assumed that the coupled system is well-
posed and exhibits sufficiently smooth solutions at least
for small initial observer errors e(z, 0) = x0(z)− x̂0(z).

The well-posedness of the (uncoupled) set of equations
(17) for α(z, t) and k(z, y, t) is shown in Deutschmann
et al. (2016) by considering a boundary-value problem on
(z, y, t) ∈ T × R that can be converted into an implicit
integral equation and solved by successive approximation.
While this procedure imposes rather mild conditions on
the regularity of the time-varying terms for theoretical
results, using finite approximations of the resulting series
solution is clearly not advisable if one wants to obtain
numerical solutions of k(z, y, t) and α(z, t) in an efficient
manner. On the one hand, the iterative structure of succes-
sive approximation is typically rather slow. On the other
hand, its inherent coupling of space and time is difficult
to handle for online calculations compared to forward
time-marching algorithms. It seems much more promising
to truncate the domain in time and consider an initial-
boundary-value (IBV) problem instead. In Jadachowski
et al. (2012), an efficient numerical method has been pro-
posed for the case of time-varying parabolic PDEs. A sim-
ilar approach will be applied to the considered hyperbolic
PIDEs in the following section.

Remark 2. Imposing a boundary condition for α at z = 0
would be possible. However, in this case the solutions are
propagating backwards in time (cf. method of characteris-
tics) which contradicts the goal of forward time-marching
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