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a b s t r a c t

Two output feedback controllers based on the Continuous Twisting Algorithm are provided. In those
controllers, the state observers are based on the first and the second order Robust Exact Differentiators.
The stability of the closed loops is proven through input-to-state stability properties. In the case of the
second order differentiator, the conservation of homogeneity allows the output feedback scheme to
preserve the robustness and accuracy properties of the state feedback Continuous Twisting Algorithm. In
the same case, a smooth homogeneous Lyapunov function is constructed for the closed loop. A separation
principle in the design of the controller and the observers is established. A qualitative analysis of the
performance of the controllers in the presence of noise in the measurement is carried out. One of the
schemes is used for output feedback control of a class of nonlinear systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding Mode Control is a useful technique to design controllers
and observers for uncertain systems, providing robustness, and
even insensibility, against some sort of disturbances (Levant, 2003;
Utkin, Guldner, & Shi, 2009). Consider, for example, the disturbed
double integrator

ẋ1 = x2 , ẋ2 = u + δ , y = x1 + ν , (1)

where x = [x1, x2]⊤ ∈ R2 is the state, y is the available output, u ∈

R is the control input, δ(t) ∈ R is a Lipschitz disturbance, and ν(t) ∈

R is a bounded noise signal. For ν(t) ≡ 0, first-order sliding mode
controllers (Utkin et al., 2009) are able to stabilize exponentially
the origin of (1) by confining in finite-time the system dynamics
in a desired sliding surface. However, this is done by using a
discontinuous control signal causing the (generally undesirable)
phenomenonof chattering, and the disturbance δ must be bounded.
To substitute the discontinuous control signal with a continuous

✩ The authors thank the financial support of CONACyT (Consejo Nacional de Cien-
cia y Tecnología): Projects 241171, 282013, and CVU 371652; PAPIIT-UNAM (Pro-
grama de Apoyo a Proyectos de Investigación e Innovación Tecnológica) IN113216,
IN113614 and IN113617; Fondo de Colaboración del II-FI UNAM IISGBAS-100-2015.
The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Lorenzo Marconi
under the direction of Editor Daniel Liberzon.

* Corresponding author at: Facultad de Ingeniería, Universidad Nacional
Autónoma de México, 04510, Mexico City, Mexico.

E-mail addresses: TSanchezR@iingen.unam.mx (T. Sanchez),
JMorenoP@ii.unam.mx (J.A. Moreno), lfridman@unam.mx (L.M. Fridman).

one, Super-Twisting controller (Levant, 1993, 1998) was suggested
to stabilize exponentially the origin of (1) by reducing in finite-time
the system dynamics in a desired sliding surface for the case when
the disturbance δ is Lipschitz. Continuous controllers, such as those
in Bernuau, Perruquetti, Efimov, and Moulay (2015) and Bhat and
Bernstein (1998), achieve finite-time stability but are not able to
reject Lipschitz disturbances δ.

Higher-order sliding mode (HOSM) controllers can be used to
stabilize in finite-time the origin of (1). For example, Twisting, Ter-
minal, Sub-Optimal and Quasi-Continuous controllers (Bartolini,
Ferrara, & Usai, 1997; Levant, 1993, 2005b; Man, Paplinski, & Wu,
1994) ensure finite-time stability of the system’s origin when δ

is bounded, however, they also produce the discontinuous con-
trol action. The continuous HOSM controllers (Edwards & Shtes-
sel, 2016; Kamal, Moreno, Chalanga, Bandyopadhyay, & Fridman,
2016; Laghrouche, Harmouche, & Chitour, 2017; Torres-González,
Sanchez, Fridman, &Moreno, 2017), achieve finite-time stability of
x = 0 despite Lipschitz disturbances δ. Remarkably, this is attained
by means of a continuous control signal. These features make
continuous HOSM very appealing, however, the performance of
such controllers should be analysed considering additional issues
present in real applications. For example, under discretization,
finite-time convergence to the origin cannot be obtained. Nonethe-
less, these controllers exhibit, under discretization, an accuracy
in steady state of order three (Kamal et al., 2016; Laghrouche
et al., 2017; Torres-González et al., 2017). This is a guarantee of
large steady state error reduction when the discretization step is
reduced (Levant, 1993, 2005a). Other important issues is that the
measurement of x2 can be unavailable and the measurement of x1
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can be noisy. In Chalanga, Kamal, Fridman, Bandyopadhyay, and
Moreno (2016) the problem of output feedback for (1) is studied
using the Super-Twisting controller by designing a sliding variable.
It is shown that the Super-Twisting based observer cannot be
applied for such a control strategy and a second order Robust Exact
Differentiator (RED) (Levant, 2003) must be used to realize the
controller’s properties. Therefore, the problem of output feedback
control of the continuous HOSM deserves special attention. To
solve such a problem, the following options can be considered:

(a) The uniform differentiator proposed in Angulo, Moreno, and
Fridman (2013) and Cruz-Zavala, Moreno, and Fridman (2011) is
able to compute the derivative of x1 in a fixed time (this time does
not depend on the initial error). Then, it is possible to maintain
the control off and turn it on after the uniform differentiator
has converged. The disadvantage with this strategy is that the
convergence time for the differentiator is usually overestimated,
producing large time transients.

(b) The proposal in Angulo, Fridman, and Levant (2012) consists
in using the RED to estimate the derivatives of the output. In this
strategy, the controller must be maintained off until an on-line
algorithm detects that the differentiator has converged.

An additional problem is that, for the noise analysis, the results
of ISS robustness for homogeneous systems are not useful (in gen-
eral) for the case of controllers involving discontinuities, see e.g.
Bernuau, Efimov, Perruquetti, and Polyakov (2014) and Perruquetti
(2018).

This paper devoted to the output feedback control for Continu-
ous Twisting Algorithm (CTA) (Torres-González et al., 2017) that is
able, in absence of noise, to stabilize in finite-time the origin of (1),
compensating exactly Lipschitz disturbances δ ensuring accuracy
of order three with respect to the output during discretization
(Torres-González et al., 2017). The contributions can be summa-
rized as follows.

(1) The robustness properties of the CTA considering noise in
the states are studied through a Lyapunov function (LF).

(2) For (1), two output feedback schemes based on the first and
second order REDs are considered. The effect caused by a noisy
output y is investigated, and a separation principle based on input-
to-state stability (ISS) properties of CTA and RED is provided.

(3) For the case of the second order REDa LF for thewhole closed
loop (CL) is designed. It is verified that in this case the conservation
of homogeneity allows the output feedback scheme to preserve the
robustness and accuracy properties of the state feedback CTA.

(4) It is shown how the scheme CTA–second order RED can be
applied for output feedback control for the class of second order
nonlinear systems that can be written as

ẋ1 = x2 , ẋ2 = f (x) + u + δ , y = x1 , (2)

where x, u, δ, y are as above, and f : R2
→ R is a Lipschitz function,

for which we know a model f̄ and a Lipschitz constant lf ∈ R≥0.
(5) Numerical simulations are performed illustrating that the

usage of second order RED allows to realize the third order accu-
racy predicted for CTA for output based CTA.

Paper organization: In Section 2 we recall the state feedback
CTA and two RED observers. In this section we also provide the
result on the robustness of the CTA in presence of noise. The output
feedback controllers are stated in Section 3. The application to
nonlinear systems with drift term is presented in Section 4. A nu-
merical example is shown in Section 5. Some concluding remarks
are given in Section 6.

Notation: R is the set of real numbers, and R>0 = {x ∈ R :

x > 0} (analogously for R≥0). For x ∈ Rn, |x| denotes the Euclidean
norm. Ln : R → Rn×n denotes the matrix Ln = diag(L, . . . , L) for
some L ∈ R≥0. For x ∈ R and q ∈ R≥0, ⌈x⌋q = sign(x)|x|q.

2. The state feedback CTA and two observers

The state feedback CTA, given by

u = −L
2
3 k1⌈x1⌋

1
3 − L

1
2 k2⌈x2⌋

1
2 + η ,

η̇ = −Lk3⌈x1⌋0 − Lk4⌈x2⌋0 ,
(3)

is able to drive the states of (1) to zero in finite-time rejecting
disturbances δ with bounded derivative (Torres-González et al.,
2017). Although the second equation in (3) is discontinuous, this is
integrated through η, allowing the control signal to be continuous.
By defining the virtual state

x3 = η + δ(t) , (4)

the CL (1), (3) is given by

ẋ1 = x2 ,

ẋ2 = −L
2
3 k1⌈x1⌋

1
3 − L

1
2 k2⌈x2⌋

1
2 + x3 , (5)

ẋ3 = −Lk3⌈x1⌋0 − Lk4⌈x2⌋0 + δ̇(t) .

The third equation of (5) can be associated with the differential
inclusion (DI) ẋ3 ∈ −k3⌈x1⌋0 − k4⌈x2⌋0 + [−∆, ∆] where ⌈0⌋0 =

[−1, 1] ⊂ R. Hence, the solutions of (5) are understood in the sense
of Filippov (1988). The DI associated to (5) is r-homogeneous of
degree κ = −1 with weights r = [3, 2, 1]⊤ (see Appendix A for
homogeneity definitions). We recall the following theorem from
Torres-González et al. (2017).

Theorem 1 (Torres-González et al., 2017). Consider the r-homogene-
ous function V1 : R3

→ R, of degree m = 5, given by

V1(x) = α1|x1|
5
3 + α2x1x2 + α3|x2|

5
2 −

α4x1⌈x3⌋2 − α5x2x33 + α6|x3|5 . (6)

If |δ̇(t)| ≤ L = 1, then there exist gains k = [k1, . . . , k4]⊤ and
coefficients α = [α1, . . . , α6]

⊤
∈ R6 such that the origin of (1) is

finite-time stable.2 in CL with (3), and (6) is a LF for (5). Moreover,
for such k and α, if |δ̇(t)| ≤ ∆ and L ≥ ∆, then the origin of (1) is
finite-time stable in CL with (3), and V̄1(x) = V1(L−1

3 x) is a LF for (5).

Now, we consider the CTA with noise inputs, i.e.

ẋ1 = x2 ,

ẋ2 = −L
2
3 k1⌈x1 + ν1⌋

1
3 − L

1
2 k2⌈x2 + ν2⌋

1
2 + x3 , (7)

ẋ3 = −Lk3⌈x1 + ν1⌋
0
− Lk4⌈x2 + ν2⌋

0
+ δ̇(t) ,

where ν1 = ν1(t) ∈ R and ν2 = ν2(t) ∈ R are such that |ν1(t)| ≤ N1
and |ν2(t)| ≤ N2 for all t ≥ 0 for some N1,N2 ∈ R≥0.

Theorem 2. Consider (7) and suppose that for νi(t) ≡ 0 Theorem 1
holds. Then V̄1 is an ISS-LF for (7). Moreover, for any finite N1,N2 ∈

R≥0, there exist constants θi ∈ R>0, i = 1, 2, 3, such that the bounds

|xi(t)| ≤ θi

(
N

ri
3
1 + N

ri
2
2

)
, r = [3, 2, 1]⊤, are established in finite-

time.

Observe that the existent results on ISS robustness for homo-
geneous systems (see e.g. Bernuau et al., 2014, Perruquetti, 2018)
cannot be used to prove the particular case of Theorem2. The proof
of Theorem 2 is in Appendix B.

From (1) we have that x2 = ẏ, therefore, it is clear that a
first order differentiator is sufficient to obtain the estimation of
the second state. Hence, we consider the following first order RED
observer (Davila, Fridman, & Levant, 2005; Levant, 1998),

˙̂x1 = −L̄
1
2 l1⌈x̂1 − y⌋

1
2 + x̂2, ˙̂x2 = −L̄l2⌈x̂1 − y⌋0 + u . (8)

2 For the definition of finite-time stability see e.g. Orlov (2003).
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