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The nonlinear realization theory is recasted for time-varying single-input single-output nonlinear sys-
tems. The concept of realization has been extended to cover also the realizations with order greater than
the order of input-output equation. The minimal realization problem is studied. The state realization is
said to be minimal if it is either accessible and observable or its state dimension is minimal. In the linear

case the two definitions are equivalent, but not for nonlinear time-invariant systems. It is shown that
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the two definitions remain equivalent for nonlinear systems under certain technical assumptions. Two
alternative methods are presented for finding the minimal realization.
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1. Introduction

There exist numerous papers where the realization of nonlinear
time-invariant systems is studied, see for instance Belikov, Kotta,
and Tonso (2014), Conte, Moog, and Perdon (2007), Delaleau and
Respondek (1995) and van der Schaft (1987), but to the best knowl-
edge of the authors there is no contribution to the realization prob-
lem of nonlinear time-varying systems. We follow the algebraic
approach of differential one-forms (Conte et al., 2007), combined
with the theory of non-commutative polynomial rings (Belikov et
al., 2014; Halas, 2008; Zhang, Moog, & Xia, 2010; Zheng, Willems,
& Zhang, 2001), adapted from time-invariant to time-varying
single-input single-output (SISO) case. In the present paper (i) a
new definition of (transfer) equivalence and realization are given,
(ii) realizability conditions in Proposition 3 have been generalized
from time-invariant to time-varying systems and more impor-
tantly, extended also for the case when the dimension of realiza-
tion is greater than the order of input-output (i/o) equation. Recall
that in the literature two definitions of minimality of the state
space realization are used. First, one may require minimality of the
state dimension. Second, the realization is said to be minimal when
it is both observable and accessible (controllable), see for instance
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Kailath (1980), 363. Though in the linear time-invariant case these
two definitions are equivalent, this is no longer true in the class of
nonlinear time-invariant systems, as shown via examples in Zhang
et al. (2010). The latter points to the inconsistency of linear and
nonlinear theories. We will show that these two definitions remain
equivalent under certain technical assumptions.

In general, the direct application of the realization algorithm
does not necessarily provide a realization with minimal state di-
mension. To find the minimal realization of time-varying nonlinear
system, two alternative approaches are considered in the paper.
The first approach is based on the fact that if one starts from the
irreducible ifo equation, then the realization will be accessible.'
Reduction theory of nonlinear systems is based on the notion of
irreducible variable ¢, i.e. a variable, satisfying certain autonomous
differential equation F(¢, o'V, ..., ¢") = 0, see for instance
Conte et al. (2007) and Zhang et al. (2010); Zheng et al. (2001). The
irreducible equation is formed from the assumption F(0, ..., 0) =
0, taking ¢ = 0.> The second method starts from a non-minimal
realization, followed by the decomposition of the latter into non-
accessible and accessible subsystems. Then the equations of the
accessible subsystem may be taken as the minimal observable
realization of the given ifo equation after substituting into it the
solution of the non-accessible part.

1 The realization algorithms always yield an observable realization.

2 This means that zero is a solution of the autonomous differential equation.
The assumption is reasonable for majority of nonlinear systems and for all linear
systems.
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The paper is organized as follows. Section 2 recalls the basics of
the algebraic approach. In Section 3 the notion of equivalent one-
forms is introduced. Section 4 deals with the reduction problem. In
Section 5 the general realization of arbitrary dimension is consid-
ered and in Section 6 the minimal realization is discussed. Finally,
Section 7 draws conclusions.

2. Preliminaries

In this paper two types of SISO nonlinear time-varying equa-
tions are considered. First, the i/o equation in the form

y(e) = o, y(t), ...,y I, u(e), ..., u(1)), (1
and second, the state equations

X(t) = f(t, x(t), u(t)), y(t) = h(t, x(t)), (2)

where u(t) € R is input, y(t) € R is output and x(t) € R" is
state variable. For the sake of compactness the argument t will be
omitted from now on. The special case, where input u is missing in
systems (1) or (2), is not treated in this paper. Sometimes also the
i/o equation in implicit form are considered

Uy, ...,y u, .. u)y =0, 3)

where ¥(-) = y™ — ¢(-). Additionally, we assume that ()
and f(t, x, u) (in the expanded form) do not include the terms,
depending only on t. This requirement is consistent with linear
theory which considers X = A(t)x + B(t)u, and not x = A(t)x +
B(t)u + C(t). Below we briefly recall the approach of differential
1-forms from Conte et al. (2007), extending it to the time-varying
case, i.e. for the case when the system equations depend explicitly
on time t. Formally, this means that the ground field k = R(t) is
a field of meromorphic functions of t and not just R as in the case
of time-invariant systems. The approach of 1-forms is based on the
idea of working with differentials of nonlinear system equations
rather than with equations themselves. This allows to linearize the
intermediate computations.

Let Ay be the ring of analytic functions in a finite number of
variables from the set {t, ¥, ¢ > 0, u® k > 0}.Thering A isan
integral domain. Let K, be the field of fractions of the ring .A.. The
elements of K, are the meromorphic functions. Let d/dt : Ko, —
Ko be the time-derivation operator. For the sake of compactness
we write d/dt(a) = 4, (d/dt)*(a) = & and (d/dt)*(a) = a™
forn > 2,a € Ku. Then the pair (K, d/dt) is differential
field (Kolchin, 1973). Over the field K, a differential vector space
€ = SPx, {d¢ | ¢ € Koo} is defined, where sp denotes linear
span. Consider a 1-form w € £ such that w = ) ,04d¢;, o4, & €
Koo. Its derivative w is defined by @ = Zi(didgi + aidéi). The
same notations are used for derivative operators in K., and £,. The
space £ is closed under derivative operator. One says that w € €4
isanexact 1-formif w = do forsome o € K. A 1-form v for which
dv = 0 is said to be closed (locally exact). A subspace V is said
to be closed or completely integrable, if it admits locally an exact
basis V = spy_ {d¢y, ..., d¢ } (Choquet-Bruhat, DeWitt-Morette,
& Dillard-Bleichi, 1982). Integrability of V = spx_{w1,..., o}
can be checked by Frobenius theorem: V is completely integrable
if and only if dw; A w1 A --- Aw, = 0fori = 1,...,r.Hered
is exterior differential operator and A denotes the wedge product,
see Choquet-Bruhat et al. (1982).

Next, the algebraic approach of 1-forms is supplemented by the
theory of non-commutative polynomial ring. Polynomials allow
to represent the 1-forms as well as the operations with them
in a compact form; such tools have been used to address many
problems for nonlinear time-invariant systems (Belikov, Kotta, &
Tonso, 2015; Halas, 2008; Zheng et al., 2001). The field K, and the
operator d/dt induce a non-commutative ring of left differential

polynomials Ky [s]. A polynomial p € Kqo[s] can be uniquely
written as p = pes“ + pe_15"1 + -+ + p1s + po, where s is a
formal variable and p; € K, fori = 0, ... . Polynomial p # 0 if
and only if at least one of the functions p; is non-zero. If p, # 0,
then the integer « is called the degree of p and denoted by deg(p).
We set additionally deg(0) = —oo. The addition of the polynomials
is defined in the standard way. However, for a € Ko, C Kso[S] the
multiplication is defined by the commutation rule s - a := as + a.
In Kuo[s] the following left Ore condition holds: For all non-zero
a, b € K4[s] there exist non-zero d, b € Koo[s] such thatda = bb.
From the ring K, [s] one can construct a non-commutative field of
fractions. Define a set V := K[s] \ {0}. Consider the set of left
fractions denoted by Ko (5) = VK4 [s]. Elements of Ko, (5) are
left fractions in the form b~' a, where a € K[s], b € V. Since the
ring Koo[s] is an integral domain, thus K, (s) is a field.

A left differential polynomial a € K.[s] may be interpreted as
an operator a(s) : £, —> Exo. Define for dy, du, dt € £

sdy := (d/dt)dy = dy, sdu := (d/dt)du = di,

(4)
sdt = (d/dt)dt = 0.

It is natural to extend (4) for a = ZLOais" as a(s)(adg) =
S pailst - @)d with a;, @ € Ko and dz € {dy, du, dt}. Using (4)
every 1-form w = Yk _oa,dy® + Y obsdul® + codt € £,
where a,, bg, co € Ko, may be expressed in terms of the left
differential polynomials as w = Zizoaas‘)‘dy + Zé;obﬂsﬁdu +
codt = a(s)dy + b(s)du + cdt, where a,b € Ko[s]andc = ¢y €
Koo. It is easy to see that sw = @, for w € &.

3. Equivalence of 1-forms

In Section 4 we associate with each nonlinear system its 1-form
and on the set of 1-forms £, the equivalence relation is defined.
In linear case the equivalence relation reduces to the equality of
transfer functions.

Definition 1. The 1-forms wy, w, € &4 are called equivalent,
denoted w; = wy, if there exist non-zero polynomials A, u €
KoolS] such that

A(S)w1 = u(s)w;. (5)
Proposition 1. Relation (5) defines an equivalence relation on E..

Proof. Symmetry and reflexivity are obvious. To show transitivity
we assume that w = @ and @ = @. Due to (5) we may write

a(s)o = B(s)o, y(s)o = §(s)d, (6)

By the left Ore condition one can find, for arbitrary non-zero
polynomials 8,y € KoolS], two non-zero E Yy € Kxls] such
that 88 = yy. Multiplying the relations (6), respectively, by 8
and ¥ from left, we obtain B(s)a(s)w = B(s)B(s)@, P(s)y(s)d =
7(s)8(s). Adding these equalities and regarding that B = 7y
yields B(s)a(s)w = Y(s)8(s)w, thus w = @. O

The equivalence relation divides 1-forms in £, into equivalence
classes.

Definition 2. A differential form w € & is called irreducible, if
w = y(s)r, where y € Kylsl, T € Ex, and @ #* 0 yields
deg(y) = 0.

Definition 3. Given w € &, the form 7, is an irreducible form of
o whenever 7, = w and 7, is irreducible.

Algorithm 1 finds 7, = a(s)dy + B(s)du + cdt for the given 1-form
w = a(s)dy + b(s)du + cdt.
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