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a b s t r a c t

In this paper, the augmented Lagrange (AL) algorithm for distributed optimization is studied. Compared
with the existing results, this paper uses different techniques, including the factorization of weighted
Laplacian and the spectral decomposition technique, to prove the linear convergence of the AL algorithm,
and simultaneously provides a novel description on the convergence rate. First, by using an important
factorization of weighted Laplacian, it is proved that the linear convergence of the AL algorithm can be
achieved via a simplified analysis procedure. Within this framework, a novel quantitative description
on the convergence rate is then provided based on spectral decomposition technique. Meanwhile, by
determining the monotonicity of an auxiliary function, a connection between convergence rate, step size
and edge weights is established. Finally, simulation examples illustrate the theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few years, the study onmulti-agent networks has at-
tracted much attention with the rapid development of networked
systems (Li & Yang, 2016; Liu & Wang, 2013; Ma & Yang, 2016;
Meng, Xiao, & Xie, 2011). Especially, distributed optimization over
multi-agent networks is one of the most popular topics due to its
widely applications on source localization, data regression, model
predictive control and resource allocation (Guo,Wen,Mao, & Song,
2016; Mota, Xavier, Aguiar, & Püschel, 2015; Yi, Hong, & Liu, 2016;
Zhang, Lou, Hong, & Xie, 2015). In distributed optimization, a net-
work of agents is often considered to cooperatively minimize the
sum of local objective functions, where the local objective function
is privately known by its individual agent, and each agent can only
exchange the information with its neighbors.

The existing distributed optimization algorithms are mostly
constructed by using primal domain (gradient descent) methods
and primal dual (augmented Lagrange)methods. In primal domain
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methods, Nedić and Ozdaglar (2009) present a distributed subgra-
dient algorithm to solve the convex optimization problems over
time-varying networks, and the subgradient algorithm is extended
in Nedić, Ozdaglar, and Parrilo (2010) to solve the constrained
optimization problems. The works in Nedić and Olshevsky (2015),
Tsianos, Lawlor, and Rabbat (2012) and Xi and Khan (2016) gener-
alize the distributed subgradient algorithms from the undirected
graphs to the directed ones. A fast distributed algorithm is pre-
sented in Jakovetić, Xavier, and Moura (2014) by using Nesterov’s
gradient method, and a dual averaging subgradient method is
presented in Duchi, Agarwal, and Wainwright (2012). Note that
the advantage of primal domainmethods is their low computation
burden. However, this class of methods often leads to slow conver-
gence or low accuracy due to the requirement of diminishing step
sizes (Ling, Shi, Wu, & Ribeiro, 2015).

To accelerate the convergence, some efficient distributed algo-
rithms with fixed step sizes (Qu & Li, 2017; Xu, Zhu, Soh, & Xie,
2015) are provided. Especially, the well known distributed aug-
mented Lagrange (AL)methods often exhibit the fast linear conver-
gence. One type of AL methods is named as Alternating Direction
MethodofMultipliers (ADMM), basedonwhichmany effective dis-
tributed algorithms are proposed, such as Chang, Hong, and Wang
(2015), Iutzeler, Bianchi, Ciblat, and Hachem (2016), Makhdoumi
and Ozdaglar (2017), Shi, Ling, Yuan, Wu, and Yin (2014) and Wei
and Ozdaglar (2012a). However, distributed ADMM often leads
to high computation burden since the primal variables need to
achieve successive minimizations at each iteration (Ling et al.,
2015). To reduce the computation burden, the linearized ADMM
algorithms (Aybat, Wang, Lin, & Ma, 2018; Ling et al., 2015) as

https://doi.org/10.1016/j.automatica.2018.04.010
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.04.010
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.04.010&domain=pdf
mailto:s254705600@sina.com
mailto:yangguanghong@ise.neu.edu.cn
https://doi.org/10.1016/j.automatica.2018.04.010


56 C.-X. Shi, G.-H. Yang / Automatica 94 (2018) 55–62

well as the saddle point methods are studied, where only one
gradient-like step is performed at each iteration to update the
primal variables, thus leads to lower computation burden. The
exact first-order algorithm (EXTRA) (Shi, Ling, Wu, & Yin, 2015)
is one of the classical saddle point methods, based on which
some interesting generalized algorithms (Hong, 2016; Mokhtari &
Ribeiro, 2016; Nedić, Olshevsky, & Shi, 2017) are developed. It has
been shown in Ling et al. (2015) and Shi et al. (2015) that both
EXTRAmethods and linearized ADMM algorithms can also achieve
the linear convergence, which enjoy the advantages of both lower
computation burden and fast convergence. In fact, the convergence
analyses of these algorithms are very crucial on establishing the
linear convergence, and also closely relate to the rate description.
Based on these observations, one of the most important problems
is that how to simplify the convergence analyses of the existing
methods and further provide a more concise description on con-
vergence rate. Meanwhile, it is also of interest to establish a novel
relationship between the convergence rate, step size and graph
parameters. These reasons motivate our current study.

In this paper, the AL algorithm is further studied. The main
contribution of this paper is that a simpler and clearer presentation
of the convergence proof for the gradient-based AL algorithm is
provided. Specifically, this paper uses different techniques, in-
cluding the factorization of weighted Laplacian and the spectral
decomposition technique, to prove the linear convergence of the
algorithm. Compared with the existing results, the differences of
our work are summarized as follows:
• It is shown that the convergence analysis simplifies the proofs
of EXTRA methods (Mokhtari & Ribeiro, 2016; Shi et al., 2015) and
linearized ADMM algorithms (Aybat et al., 2018; Ling et al., 2015).
Within this framework, a novel description on the convergence
rate is provided, which has a simpler relation associated with
the communication graphs than the EXTRA methods (Mokhtari &
Ribeiro, 2016; Shi et al., 2015) and the ADMM algorithms (Ling et
al., 2015; Makhdoumi & Ozdaglar, 2017; Shi et al., 2014).
• Further, a connection between the convergence rate, step size
and edge weights is established, which provides a different in-
sight on the rate description compared with the methods over
unweighted networks (Chang et al., 2015; Iutzeler et al., 2016;
Shi et al., 2014; Wei & Ozdaglar, 2012a), as well as the gradient
method (Qu & Li, 2017) that focuses on the relation between the
convergence rate and function smoothness.
• Besides, the convergence of our algorithm is guaranteed when
the step size is smaller than a constant. This is similar to the gradi-
ent based ALmethods such as Kia, Cortés, andMartínez (2015), Lei,
Chen, and Fang (2016), Liu, Yang, and Hong (2017), Shi et al. (2015)
and Wang and Elia (2010), but differs from the ADMM algorithms
such as Makhdoumi and Ozdaglar (2017) and Shi et al. (2014).

In addition, it is worth mentioning that the proposed algorithm
needs to know a global ordering on the nodes, which is similar to
the previous works (Mota, Xavier, Aguiar, & Püschel, 2013; Wei
& Ozdaglar, 2012a). In fact, this is a necessary assumption in our
algorithm design. One technique to relax this assumptionmight be
changing the order of node update into a randomway, as suggested
inWei andOzdaglar (2012b, 2013c). However, using this technique
in our framework may arise new challenges for the convergence
analysis of algorithm. Thus how to relax this assumption still
requires further studies.

Paper organization: Section 2 gives the problem formulation and
the algorithm design. The convergence analysis and the conver-
gence rate description are provided in Section 3. In Section 4, the
simulation examples are given, and finally, the conclusions are
derived in Section 5.

Notation: For any matrix A ∈ Rn×m, AT represents its transpose. 1N
denotes theN×1 vectorwith all elements equal to 1. IN denotes the

N×N identitymatrix.⊗ represents the Kronecker product. diag(•)
denotes the diagonal matrix. For a vector v ∈ Rn, ∥v∥2 denotes
the Euclidian norm. For a given semidefinite matrix G with proper
dimensions, G-norm of v is denoted as ∥v∥G =

√
vTGv.

2. Problem formulation

2.1. Graph theory

An undirected graph G = (V,E) consists of a set V =

{v1, v2, . . . , vN} of N nodes, and a set E of M edges (vj, vi), where
the order of the nodes in E is irrelevant. The neighborhood of ith
node is denoted asNi. An undirected graphG is connected if every
pair of nodes is joined by a path. Theweight lij associatedwith each
edge is a nonnegative real value, and if there is no edge connecting
vi and vj, lij = 0. The Laplacian matrix L = [Lij] ∈ RN×N for an
undirected graph is defined as follows: Lij = −lij if i ̸= j; and
Lij =

∑N
j̸=ilij otherwise. Without loss of generality, let 0 = λ1 ≤

λ2 ≤ · · · ≤ λN be the eigenvalues of L.
Next, we give a factorization of the Laplacian matrix L. Denote

weight matrix W = diag(w1, w2, . . . , wM ) as an M × M diagonal
matrixwith diagonal elements given by the edgeweights, i.e.,wι =

lij, for (i, j) = eι, ι = 1, 2, . . . ,M . Subsequently, each edge of G is
assigned with an arbitrary orientation, i.e., for each edge eι ∈ E ,
denote one endpoint as the head and the other as the tail. Then,
we define the oriented incidence matrix E = [εκι] ∈ RN×M as
follows: εκι = 1 if node κ is the head of eι; εκι = −1 if node κ
is the tail of eι; and εκι = 0 otherwise. It should be pointed out
that the incident matrix E has an important property that 1TE = 0.
Similar toWei and Ozdaglar (2012a), it is assumed that the smaller
row in each column of E has entry 1 while the larger one has
−1. Further, based on the definitions of the weight matrix W and
incidence matrix E , the Laplacian matrix L can be factorized as
L = EWET

= EW
1
2 W

1
2 ET . Note that this factorization plays an

important role in the later developments.

2.2. Problem formulation

In this paper, a network of N agents is considered to coopera-
tively solve the following optimization problem:

min
x̃

f̃ (x̃) =

N∑
i=1

fi(x̃), (1)

where x̃ ∈ Rn, fi(x̃) : Rn
→ R is the convex objective function. It is

assumed that the minimum of (1) can be attained. Moreover, the
function fi(x̃) is privately known by ith agent and each agent can
only communicate with its neighbors through the communication
network. Here, the following assumption is required:

Assumption 1. The underlying graph G of communication net-
work is connected.

According to the problem (1), we give an equivalent problem by
introducing the edge-based constraints:

min
x

f (x) =

N∑
i=1

fi(xi)

s.t.
√
lij(xi − xj) = 0, ∀{i, j} ∈ E, (2)

where x = [xT1, . . . , x
T
N ]

T
∈ RnN and xi ∈ Rn is an estimated

solution of (1). From the definitions of the matrices W and E , the
constraints

√
lij(xi − xj) = 0 can be written as the compact form
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