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a b s t r a c t

In event-triggered control, the control task consisting of sampling the plant’s output and updating the
control input is executedwhenever a certain event function exceeds a given threshold. The event function
typically needs to be monitored continuously, which is difficult to realize in digital implementations. This
has led to the development of periodic event-triggered control (PETC), in which the event function is only
evaluated periodically. In this paper, we consider general nonlinear continuous event-triggered control
(CETC) systems, and present a method to transform the CETC system into a PETC system. In particular, we
provide an explicit sampling period atwhich the event function is evaluated andwepresent a constructive
procedure to redesign the triggering condition. The latter is obtained by upper-bounding the evolution
of the event function of the CETC system between two successive sampling instants by a linear time-
invariant system and then by using convex overapproximation techniques. Using this approach, we are
able to preserve the control performance guarantees (e.g., asymptotic stability with a certain decay rate)
of the original CETC system.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In digital control applications, the control task consists of sam-
pling the outputs of the plant and computing and implementing
new actuator signals. This procedure is typically executed in a
time-triggered fashion, which may lead to a waste of communi-
cation and energy resources, as the execution of the control task is
done irrespective of whether there actually is a need for a control
update or not. To mitigate the unnecessary waste of resources,
various event-triggered control (ETC) strategies have been pro-
posed in the recent literature, see, e.g., Cassandras (2014), Dolk,
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Borgers, and Heemels (2017), Girard (2015), Heemels, Sandee,
and Van Den Bosch (2008), Henningsson, Johannesson, and Cervin
(2008), Lunze and Lehmann (2010), Miskowicz (2006), Postoyan,
Tabuada, Nesić, and Anta (2015), Tabuada (2007) and Tallapragada
and Chopra (2014). In ETC, the control task is executed after the
occurrence of an event, generated by some well-designed trigger-
ing condition, rather than after a fixed period of time, as in conven-
tional periodic sampled-data control. In this way, ETC is capable of
significantly reducing the number of control task executions, while
retaining a satisfactory closed-loop performance.

A main implementation issue of ETC (for which we will use
the term continuous event-triggered control (CETC) from here
on) is that the event function has to be monitored continuously,
which is difficult to realize on digital platforms. A solution to this
problem is periodic event-triggered control (PETC), in which the
event function is only checked periodically at fixed equidistant
time instances, thereby enabling (easier) implementation on a
digital platform. Note that PETC differs from standard periodic
sampled-data control, as in PETC the event times (which result
from the triggering condition and the system’s state evolution)
are in general only a (specific) subset of the sampling times and
can be aperiodic. Of course, event-triggered control schemes for
discrete-time systems (e.g., Cogill, 2009, Eqtami, Dimarogonas, &
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Kyriakopoulos, 2010, Heemels & Donkers, 2013, Li & Lemmon,
2011, Molin & Hirche, 2013, Yook, Tilbury, & Soparkar, 2002) can
also be interpreted as PETC schemes, but these do not take into
account the inter-sample behavior. In the past few years, various
PETC strategies have been proposed, see, e.g., Heemels, Donkers,
and Teel (2013), Heemels, Dullerud, and Teel (2016), Heemels et
al. (2008), Henningsson et al. (2008) and Postoyan, Anta, Heemels,
Tabuada, and Nesić (2013). However, to the best of the authors’
knowledge, there are hardly any design methods for PETC for non-
linear continuous-time systems. Two exceptions are the works in
Sanfelice and Teel (2006) andWang, Postoyan, Nesić, and Heemels
(2016). In Sanfelice and Teel (2006), the sample-and-hold imple-
mentation of general hybrid controllers for nonlinear systems is
analyzed, which covers the PETC implementation of a nonlinear
CETC system as a subcase. These results ensure that, under general
conditions, if a compact set is uniformly globally asymptotically
stable (UGAS) for the original CETC system, then this property
is semiglobally and practically preserved for the emulated PETC
system by taking the sampling period sufficiently small. In the
recent workWang et al. (2016), an approach has been proposed for
the design of PETC state-feedback controllers to stabilize nonlinear
systems, which ensures uniform global asymptotic properties and
provides an explicit bound on the sampling period.

In this paper, we present a method to transform a general non-
linear CETC system into a PETC systemwhich preserves the control
performance guarantees of the given CETC system. Our method
consists of two steps. First, we upper bound the evolution of the
event function of the given CETC system between two successive
sampling instants by a linear time-invariant (LTI) system. Based on
this LTI system, we can formulate a redesigned event function for
the PETC implementationwhichwould involve checking an infinite
number of conditions at every sample time. To overcome this issue,
we use convex techniques to overapproximate the evolution of the
LTI system over a sampling period, and end up with a redesigned
event function which is implementable in practice.

In contrast to Sanfelice and Teel (2006), our method provides
an explicit sampling period (in fact, the sampling period is a design
parameter), it fully preserves the control performance guarantees
of the givenCETC system, and is not limited to stability of a compact
set a priori. Compared to Wang et al. (2016), we do not focus
on stabilization and we can cope with a larger class of triggering
conditions. Preliminary results have been presented in Postoyan et
al. (2013), in which we were only able to approximately preserve
the control performance guarantees of the given CETC system. In
addition, the new results presented here are based on less stringent
conditions compared to Postoyan et al. (2013) (see Remark 3 for
more details).

Nomenclature. Let R = (−∞, ∞), R⩾0 = [0, ∞), N = {1, 2, . . .}
and N0 = {0, 1, 2, . . .}. Given N ∈ N, we denote the set
{1, 2, . . . ,N} by N̄ . For a vector x ∈ Rn, we denote by ∥x∥ :=

√
x⊤x

its 2-norm, and for a matrix A ∈ Rn×m, we denote by ∥A∥ :=√
λmax(A⊤A) its induced 2-norm. For a signal w : R⩾0 → Rn, we

denote the right limit at time t ∈ R⩾0 byw(t+) = lims↓tw(s), when
it exists. The solution z of a time-invariant dynamical system at
time t ∈ R⩾0 starting with the initial condition z(0) = z0 will be
denoted by z(t, z0) or simply by z(t) when the initial state is clear
from the context. The notation ⌊x⌋ stands for the largest integer
smaller than or equal to x ∈ R.

2. Problem statement

We consider a nonlinear plant of the form

ẋ(t) = f (x(t), u(t)), (1)

where x(t) ∈ Rnx is the state and u(t) ∈ Rnu is the control input
at time t ∈ R⩾0. We assume that we have designed a continuous
event-triggered state-feedback controller for plant (1), given by

x̂(t) = x(tk), for t ∈ (tk, tk+1] (2a)
u(t) = k(x̂(t)) (2b)
t0 = 0

tk+1 = inf{t > tk | Γ
(
x(t), x̂(t), χ (t)

)
> 0}, (2c)

where the function k(x̂) defines the feedback law, x̂ is the state
information available to the controller, and χ ∈ Rnχ is used
to capture other relevant variables such as timers, counters, or
possibly even the state of an auxiliary dynamical system (Dolk
et al., 2017; Girard, 2015; Postoyan et al., 2015). The event func-
tion Γ is designed such that some desired control performance
(e.g., asymptotic stability with a certain decay rate) is achieved as
long as it remains non-positive along the system’s trajectories.

Writing the triggering law as in (2c) allows us to consider var-
ious event-triggers considered previously in the literature, which
we illustrate by the following two examples. In Tabuada (2007),
the condition Γ (x, x̂) = γ (∥x̂ − x∥) − σα(∥x∥) ⩽ 0 (for specific
functions γ , α and σ ∈ (0, 1)) ensures that a Lyapunov function
V has a guaranteed decay rate (1 − σ )α(∥x∥) along the solutions
to system (2) (which guarantees global asymptotic stability of the
system). In Dolk et al. (2017), we have that χ = (τ , κ, η) (where
τ is a timer, κ a counter, and η the state of an auxiliary dynamical
system), and that the condition Γ (x, x̂, χ ) = −η ⩽ 0 ensures that
the system is UGASwith a guaranteed decay rate. Another example
is provided in Section 4.

Let z = (x, x̂, χ ) ∈ Rnz with nz = 2nx + nχ . We model the
closed-loop system (1)–(2) (and possibly auxiliary dynamics for χ )
as an impulsive system like in Heemels et al. (2013), which gives

ż = g(z), for t ∈ (tk, tk+1] (3a)
z(t+k ) = b(z(tk)) (3b)

t0 = 0
tk+1 = inf{t > tk | Γ (z(t)) > 0}, (3c)

for k ∈ N0, and appropriate g : Rnz → Rnz and b : Rnz → Rnz . In
case nχ = 0, we have that

g(z) =

[
f (x, k(x̂))

0

]
and b(z) =

[
x
x

]
.

For the definition of the functions g and b in case nχ ̸= 0 we refer
to Section 4 for an example.

Solutions to (3) are interpreted as follows. In between the
event times tk, k ∈ N, determined by (3c), the system evolves
according to the differential equation (3a), where z(t+k ) given by
the update (3b) denotes the starting point for the solution to (3a)
in the interval (tk, tk+1], k ∈ N. Hence, the solutions we consider
are left-continuous signals. Note that t0 = 0, and hence, we start
with an update according to (3b).

Remark 1. The analysis presented in this paper is based on sys-
tem (3). Therefore, our design applies to any CETC configuration
that can be written in the format of (3), including the case where
the control input u in (1) is generated by a dynamic controller. The
states of the controller would then be incorporated in the vector x
and we would obtain a model of the form (3). Similarly, the case
in which the controller is not implemented using zero-order-hold
functions can be considered as long as the problem can bemodeled
by (3). For instance, when using the model-based technique of
Lunze and Lehmann (2010), x̂ would be equal to xs in Lunze and
Lehmann (2010), which is the model-based estimate of x.

In order to transform the CETC system (3) into a PETC system,
we require the following three assumptions.
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