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a b s t r a c t

In this work, we investigate the problem of event-triggered stabilization for a class of stochastic nonlinear
systems. An event-triggered control (ETC) approach is proposed by introducing an additional internal
dynamic variable. The presented event-triggered mechanism (ETM) can guarantee the existence of a
positive lower bound on inter-event times (or called inter-execution times). In addition, the presented
technique can ensure the second moment asymptotic stability of the closed-loop stochastic nonlinear
system.

© 2018 Published by Elsevier Ltd.

1. Introduction

For physical systems, feedback control is often implemented by
embedded digitalmicroprocessorswhich sometimes are small and
have limited communicating capability and low computing power.
In order to save communication and computation resources, differ-
ent from the traditional digital control executed periodically, the
ETC is proposed (see Årzén, 1999; Heemels, Johansson, & Tabuada,
2012; Heemels, Sandee, & VanDe. Bosch, 2008; Postoyan, Tabuada,
Nešić, & Anta, 2015; Tabuada, 2007; Wang & Lemmon, 2011 and
references therein). In the event-triggered control systems, the
control tasks are not executed periodically but only when some
triggered conditions are satisfied.

A basic issue for the ETM is to avoid that the triggered conditions
are satisfied infinite times in finite time, i.e., a Zeno phenomenon,
which makes the ETM infeasible for practical implementation.
When one considers the case of stochastic nonlinear systems, this
task becomes quite difficult. For stochastic nonlinear systems, due
to the existence of additive white noise disturbances, the straight-
forward adaptation of the existing ETMs used in deterministic
nonlinear systems (e.g., Girard, 2015; Tabuada, 2007) may lead to
a Zeno phenomenon. The reason is that the states of stochastic sys-
temsmay exceed any bound in an arbitrarily small amount of time,
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which may make the adapted event-triggered conditions satisfied
in an arbitrarily small amount of time, i.e., a minimum positive
inter-execution time may not be guaranteed. Furthermore, the
Hessian terms, which arise from the differential of stochastic pro-
cesses, make it difficult to analyze the existence of a positive upper
bound on inter-execution times for a designed ETM using certain
quantities, e.g., the differential of ∥e(t)∥/∥x(t)∥ in Tabuada (2007).
Hence, there are few results for triggered control for stochastic
nonlinear systems. Thework (Quevedo, Gupta,Ma, & Yüksel, 2014)
proposes a fixed threshold-based event-triggered anytime control
method under packet drops. Nevertheless, Quevedo et al. (2014)
only applies to discrete-time stochastic nonlinear systems. A trig-
gered sampling policy is proposed for state-feedback controlled
stochastic differential equations in Anderson, Milutinović, and
Dimarogonas (2015). However, in order to exclude the sampling
Zeno phenomenon, the sampling policy in Anderson et al. (2015)
needs a strict condition that an upper bound of the norm of the
sampling value is known.

In this note, by introducing an additional internal dynamic
variable, an efficient ETM is proposed for a class of state-feedback
stochastic nonlinear control systems. Different from the deter-
ministic case (Girard, 2015), the internal dynamic variable is
constructed by the bounded functions of certain statistics of the
states distribution of the stochastic nonlinear systems. Under the
presented ETM, we can prove the existence of the positive min-
imum inter-execution time and the second moment asymptotic
stability of the corresponding closed-loop ETC system. In classical
ETM (Tabuada, 2007) for the deterministic nonlinear case, by
solving some special scalar differential equations, one can exclude
the sampling Zeno phenomenon for a given compact set containing
the initial value. In this note, different from Tabuada (2007), an
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explicit formula of a positive lower bound of inter-execution times
is presented for any initial value by solving a constructed equation.

Notations: For a given vector x, xT and ∥x∥ denote the transpose
of x and its Euclidean norm, respectively. For a given matrix X , XT

and ∥X∥ denote the transpose of X and its trace norm, respectively.
For real numbers a and b, a∨ b and a∧ b denote the maximum and
minimum of a and b, respectively. Ci is the space of all functions
which have continuous ith order derivatives in their arguments. In
this paper, the function classesK,K∞,KL are defined as usual. The
notation id(·) stands for the identity mapping from R to R. Let Fm

n
denote the function set {K : Rn

→ Rm
⏐⏐K ∈ C0 and K (0) = 0}. If

there is no ambiguity, we will write with x, e, xk and ek instead of
x(t), e(t), x(tk) and e(tk) for any t ≥ 0 and k ∈ N.

2. Problem statement

Consider the following stochastic nonlinear control systems:

dx = f (x, u)dt + g(x, u)dw, (1)

where x ∈ Rn is the state, u = u(x) : Rn
→ Rm is the

input, w is an r-dimensional standard Brownian motion defined
on the complete probability space (Ω,F, {Ft}t≥0, P) with Ω being
a sample space, F being a σ -field, {Ft}t≥0 being a filtration, and
P being a probability measure, f : Rn

× Rm
→ Rn and g :

Rn
× Rm

→ Rn×r are measurable functions with f (0, 0) = 0n×1
and g(0, 0) = 0n×r .

Definition 1 (Anderson et al., 2015). System (1) is said to be second
moment asymptotically stable if there exists a function β ∈ KL
such that

E(∥x(t)∥2) ≤ β(E(∥x(t0)∥2), t − t0), t ≥ t0, x0 ∈ Rn.

Assume that there exists a state feedback controller K ∈ Fm
n

such that the control signal u = K (x) stabilizes the system (1)
in second moment. The controller is implemented on a digital
platform so that the actual input of system (1) is given by

u(t) = K (xk), t ∈ [tk, tk+1), (2)

where tk, k = 0, 1 · · · , are the execution times determined by the
ETM.

Let e(t) = xk − x(t), t ∈ [tk, tk+1). Then the closed-loop system
(1)–(2) is transformed into

dx(t) = f (x, e)dt + g(x, e)dw, t ∈ [tk, tk+1), (3)

where f (x, e) := f (x, K (x + e)) and g(x, e) := g(x, K (x + e)).
The following assumption is given to guarantee the existence

and uniqueness of the solution of system (3).

Assumption 1. (i) For every integer n ≥ 1, there exists a positive
constant Ln such that for all x′, x′′, e′, e′′

∈ Rn with ∥x′
∥ ∨ ∥x′′

∥ ∨

∥e′
∥ ∨ ∥e′′

∥ < n,

∥g(x′, e′) − g(x′′, e′′)∥2
∨ ∥f (x′, e′) − f (x′′, e′′)∥2

≤ Ln(∥x′
− x′′

∥
2
+ ∥e′

− e′′
∥
2). (4)

(ii) There exists a positive constant H such that for all x, e ∈ Rn,⏐⏐xT f (x, e) +
1
2
∥g(x, e)∥2

⏐⏐ ≤ H(∥x∥2
+ ∥e∥2), (5)⏐⏐ − eT f (x, e) +

1
2
∥g(x, e)∥2

⏐⏐ ≤ H(∥x∥2
+ ∥e∥2). (6)

Remark 1. By (5) and (6), we obtain that xT f (x, e) − eT f (x, e) +

∥g(x, e)∥2
≤ 2H(∥x∥2

+ ∥e∥2). Hence, Assumption 1 can be

referred to as monotone growth and local Lipschitz conditions of
the following stochastic system

dx(t) = f (x, e)dt + g(x, e)dw, t ∈ [ti, ti+1)
de(t) = −f (x, e)dt − g(x, e)dw, t ∈ [ti, ti+1)

x(ti) = x(t−i ), e(ti) = 0, i = 1, 2, . . . (7)

These conditions are often used to obtain the global existence
and uniqueness of the solutions of stochastic nonlinear systems
(see Mao, 1997, Theorem 3.6).

To determine an ETM for system (3) such that this system
is second moment asymptotically stable, as in the deterministic
case (Tabuada, 2007), we make the following assumptions:

Assumption 2. There exist class K∞ functions α1, α2, γ , α, and a
function V (x) ∈ C2 such that ᾱ−1

1 is a concave function, α ◦ α−1
2

is a convex function, and for ∀(x, e) ∈ Rn
× Rn, the following

inequalities

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (8)
LV (x) ≤γ (∥e∥) − α(∥x∥) (9)

hold, where ᾱ1(s) := α1(
√
s), and the differential operator L is

defined as in Mao (1997).

Assumption 3. There exist a convex function α0 ∈ K∞ and a
concave function γ0 ∈ K∞ satisfying

α0(∥x∥2) ≤ α(∥x∥), (10)

γ0(∥e∥2) ≥ γ (∥e∥) (11)

and γ −1
0 ◦ (θα0)(·) ≥ η · id(·) with constants η > 0 and 0 < θ < 1,

where α and γ are defined as in Assumption 1.

Remark 2. If one can find a control law k and a positive definite
function V (x) such that Assumption 2 is satisfied with α(s) =∑N

k=2aks
k and γ (s) = b2s2 + b1s, where the non-negative param-

eters ak, 2 ≤ k ≤ N and b1, b2 such that
∑N

k=2|ak|
2 > 0 and b21 +

b22 > 0, respectively, then the convex function α0 and the concave
function γ0, satisfying Assumption 3, always exist, e.g., α0(s) =∑N

k=2aks
k
2 and γ0(s) = b1

√
s + b2s. The above discussed condi-

tions hold for many classes of stochastic linear/nonlinear control
systems, see Sections 4 and 5 for a discussion of the linear case and
a nonlinear example, respectively.

Under Assumption 2, the adaptation of the deterministic case
(Tabuada, 2007) leads to a ETM for system (3):

tk+1 = inf{t ≥ tk
⏐⏐ γ (∥e(t)∥) ≥ θα(∥x(t)∥)} (12)

with a constant 0 < θ < 1. However, the Zeno phenomenon may
occur with this type of ETMs, because for the stochastic system
(3), the value of γ (∥e(t)∥) may exceed the value of θα(∥x(t)∥)
in an arbitrarily small amount of time. Hence, the existence of a
minimum lower bound of inter-execution times τk = tk+1 − tk
may not be guaranteed by the ETM (12). Therefore, the direct
adaptation of the ETM of the deterministic case (Tabuada, 2007)
to the stochastic system (3) may not work. In addition, due to
the Hessian terms in the differential operator, the analysis of the
differential of ∥e(t)∥

∥x(t)∥ , used in the proof of the existence of a positive
upper bound on inter-execution times in Tabuada (2007), is not
easy. For these reasons, to guarantee the stability of system (3)
in second moment, we propose a ETM based on E(∥x(t)∥2) and
E(∥e(t)∥2) in this paper.
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