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a b s t r a c t

The dissipativity-based observer design approach is extended to a class of coupled systems of 1-D
semi-linear parabolic partial differential equations (PDEs) of diffusion–convection–reaction type with in-
domain point measurements. This class of systems covers important application examples like tubular
or catalytic reactors. By combining a dissipativity (sector) condition for the nonlinearity with a modal
measurement injection for the linear differential operator sufficient conditions for the exponential
convergence of the observer are derived in the form of a linear matrix inequality (LMI). The performance
of the proposed approach is illustrated for an exothermic tubular reactor model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion–convection–reaction systems are described by semi-
linear parabolic PDE models and are fundamental in applications
where diffusion processes have to be considered explicitly. The
problem of estimating the state profile on the basis of some lo-
cal point-wise measurements is non-trivial. Given the nonlinear
effects, phenomena like steady-state multiplicity or bifurcation
behavior have to be considered and the unknown initial profile can
lead to completely erroneous model predictions. Thus, adequate
measurement injection mechanisms must be provided in combi-
nationwithmodel predictions to design so-called observers,which
ensure that the erroneous initial guess is compensated and the
profile estimate converges to the actual state profile.

The design of observers for distributed-parameter systems fol-
lows either the early- or the late-lumping approach. In the early-
lumping approach the system dynamics are first discretized in the
spatial coordinate and then observer theory for finite-dimensional
(higher order) systems is applied (see, e.g. Christofides, 2001 and
the references therein). In the late-lumping approach the physical
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description based on PDEs is exploited and the resulting observer is
itself a PDE,which is implementedbyusing suitable approximation
techniques. This gives rise to the concept of first design then
discretize. In the present study the late-lumping approach for the
observer design for coupled 1-D semi-linear parabolic systems is
addressed.

Generally speaking, in the last decades the observer design
for distributed-parameter systems based on the late-lumping ap-
proach has reached important milestones. Particular approaches
include modal designs (Curtain, 1982; Curtain & Zwart, 1995),
back-stepping (Baccoli & Pisano, 2015; Jadachowski, Meurer, &
Kugi, 2015; Krstic & Smyshlyaev, 2008;Meurer, 2013a, 2013b), dis-
sipativity and matrix inequality based designs (Castillo, Witrant,
Prieur, & Dugard, 2013; Hagen, 2006; Hagen & Mezic, 2003;
Schaum, Moreno, & Alvarez, 2008; Schaum, Moreno, Fridman, &
Alvarez, 2013; Schaum, Moreno, & Meurer, 2016; Yang & Dublje-
vic, 2014), adaptive observers for positive-real systems (Curtain,
Demetriou, & Ito, 2003), as well as sliding-mode observers (Orlov,
2009). There are still some important open questions concerning
the design of observers, in particular for coupled semi-linear PDE
systems with in-domain measurements.

For finite-dimensional nonlinear systems dissipativity-based
observer design (Moreno, 2005, 2008) provides an effectivemeans
for dealingwith complex nonlinearities and yields explicit (local or
non-local) convergence results in terms of (linear) matrix inequal-
ities, which in turn can be solved using efficient numerical solvers.
The dissipativity-based approach has been extended to scalar 1-D
parabolic PDE systems with single in-domain Schaum et al. (2008)
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and boundary measurement (Schaum et al., 2013) as well as cou-
pled diffusion–reaction systems with a single in-domain measure-
ment (Schaum et al., 2016). In particular, in Schaum et al. (2008,
2016) theproblemof injecting a singlemeasurement into the semi-
linear parabolic PDE is performed on the basis of a separation of the
semi-linear dynamics into a linear dynamical and a nonlinear static
part in the sense of the absolute stability analysis (Hagen, 2006;
Khalil, 1996) followed by a modal observer design for the linear
differential operator (see e.g. Curtain, 1982) tomove the dominant
eigenvalues sufficiently far into the left-half open complex plane to
ensure that the potentially destabilizing effects of the nonlinearity
are compensated.

In view of these preliminary results the purpose of the present
study is to extend the dissipativity-based observer design to
coupled 1-D semi-linear parabolic diffusion–convection–reaction
systems with multiple in-domain measurements and input-
dependent nonlinearities, using the modal measurement injec-
tion approach addressed in Curtain (1982) and Curtain and Zwart
(1995) for linear systems and in Schaum et al. (2008, 2016) for
semi-linear systems with a single in-domain measurement.

The paper is organized as follows. In Section 2 the observa-
tion problem is formulated. In Section 3 relevant concepts and
results from dissipativity theory are recalled and established. In
Section 4 the dissipativity-based modal-measurement injection
observer design is developed, exponential convergence conditions
are derived in form of an LMI and the approach is put into perspec-
tivewith other designmethods. In Section 5 the case of an exother-
mic tubular reactor model is discussed and numerical simulations
are presented to illustrate the theoretical assessments. Conclusions
are drawn in Section 6.
Notation:

• H = L2(0, 1) ∩ C1(R+) denotes the space of real-valued
functions w(z, t) : [0, 1] × R+ → L2(0, 1), which are dif-
ferentiable with respect to t .H is an Hilbert space equipped
with the inner product

(v,w)L2 =

∫ 1

0
vwdz

inducing the standard L2 norm ∥ · ∥L2 =
√
(·, ·)L2 .

• The product space Hn is a real-valued Hilbert space with
inner product

(v,w) =

∫ 1

0
vTwdz =

n∑
j=1

(
vj, wj

)
L2

and the induced norm ∥ · ∥ =
√
(·, ·).

• The spaceH2(0, 1) is the Sobolev space of functionswith first
and second derivative in L2(0, 1).

• For a complex number λ ∈ C, λ̄ denotes its complex
conjugate.

• σ (A) denotes the spectrum of a matrix or an operator A.
• The dependence of functions on z and t will be denoted only

when it is important for the readability.

2. Problem statement

In the following a system described by coupled semi-linear
parabolic PDEs is considered with measurements in the interior of
the spatial domain

∂tx = Ax + Gϕ(σ, y, u) + χ(y, u) (1a)
Bx = f (y, ub) (1b)
σ = Hx (1c)
y = Cx (1d)

with initial condition x(z, 0) = x0(z) ∈
(
H2(0, 1)

)n. In (1) x(z, t) ∈

Hn is the state, A : Hn
→ Hn is a parabolic differential operator,

G(z) is an (n×q)-matrixwith entriesGij(z) ∈ L2(0, 1),ϕ is a q-vector
with entries ϕi(z, t, σ(z, t), y(t), u(z, t)) : [0, 1]×R+ ×Hp

×Rm
×

U → Hwhich are once continuously differentiable in z, smooth in
t and Lipschitz continuous in σ ∈ Hp, y ∈ Rm, u ∈ U , where σ is a
combination of states defined according to the (p× n)-matrix H(z)
with entries Hij(z) ∈ L2([0, 1]), y is the measurement vector, u is
a known input signal from the space of admissable domain inputs
U , and χ(t, z, y, u) is a known function which is once continuously
differentiable in z, smooth in t and Lipschitz continuous in y and u.
The linear boundary conditions are summarized in the operatorB
with Bx having entries ai0xi(0, t) + bi0∂zxi(0, t) and ai1xi(1, t) +

bi,1∂zxi(1, t) for i = 1, . . . , n. The function f (t, y(t), ub(t)) ∈

C∞
(
R+ × Rm

× Rb,R2n
)
is an exogenous boundary input that is

Lipschitz in y and ub, with ub ∈ C (R+,Rp). The measurement
vector y(t) ∈ Rm is determined by the output operator C : Hn

→

Rm according to

y(t) = Cx(z, t) =

⎡⎣ cT1 (δ(z − ζ1), x(z, t))
. . .

cTm (δ(z − ζm), x(z, t))

⎤⎦ (2)

with δ(ζ ) denoting the Dirac δ-function centered at z = ζ and
cTj ∈ R1×n, j = 1, . . . ,m.

Assumption 1. The operator A with the domain D(A) = {x ∈(
H2([0, 1])

)n
| Bx = 0} is a Riesz spectral operator with real

eigenvalues λj, j ∈ N fulfilling 0 > λ1 ≥ λ2 ≥ · · · for which
the algebraic and geometricmultiplicities are the same, andwhose
eigenfunctionsφi togetherwith the adjoint eigenfunctionsψi form
a Riesz basis, i.e.

(
φi,ψi

)
= δij, where δij denotes the Kronecker δ

function.

Remark 1. Note that the important class of linear (possibly unsta-
ble) diffusion–convection–reaction systems is covered in the class
(1) as particular case with H = G = I , σ = x and ϕ(x) = Kxwith a
constant matrix K ∈ Rn×n.

The particular structure of (1) is motivated by the problem of
Lur’e (Brogliato, Lozano, Maschke, & Egeland, 2007; Lur’e & Post-
nikov, 1944) considering the absolute stability of a linear system
with input ν and output σ endowed with a nonlinear feedback
ν = ϕ(σ) satisfying a sector condition of the form

(ν − K1σ)T (K2σ − ν) ≥ 0 (3)

for appropriate matrices K1, K2 ∈ Rq×p. The problem addressed
here consists in designing a measurement injection scheme with
feedback gain L(z) such that the distributed-parameter Luenberger
observer

∂t x̂ = Ax̂ + Gϕ(σ̂, y, u) + χ(y, u) − L(C x̂ − y) (4a)
Bx̂ = f (y, ub) (4b)
σ̂ = H x̂ (4c)

with initial condition x̂(z, 0) = x̂0(z) yields a spatial–temporal
estimate x̂(z, t), which exponentially converges to the actual state,
i.e. there exist positive constants a, γ > 0 such that⏐⏐⏐⏐x̂ − x

⏐⏐⏐⏐ ≤ a
⏐⏐⏐⏐x̂0 − x0

⏐⏐⏐⏐ e−γ t . (5)

3. Dissipativity concepts

For the purpose at hand consider the abstract formulation of a
linear system

∂tx = Ax + Gν

Bx = 0

σ = Hx

(6)
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