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a b s t r a c t

In this paper, a continuous control strategy for robust stabilization of a class of uncertain multivariable
linear systems with delays in both the state and control variables is proposed. A predictor is designed
to compensate the delay effect in the control input, and then an integral sliding mode control technique
alongwith super-twisting algorithm is applied to compensate partially the effect of the perturbation term.
Finally, a nominal delay-free part of the control input is designed to stabilize the sliding mode dynamics.
The proposed control scheme is extended to the class of systems modeled in Regular form. For this class
of perturbed systems with delay in the state, a transformation to the systems with the delay-free state
is proposed. The stability conditions of the closed-loop uncertain system are derived, and the results
obtained in this work are compared against previous works. To show the effectiveness of the proposed
method, simulation results are presented.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Many modern industrial processes including systems where
control signals are transmitted through networks, are modeled
by delay differential equations. In these systems, the time delay
can appear in the system state as well as in the control input.
The last case is more dangerous for the closed-loop stability if the
delay is large enough with respect to the plant dynamics rate and
the standard memoryless feedback, i.e. the usual current system
state, is used. Among stability analysis results for this case have
been reported based on the Lyapunov–Krasovskii approach (see
Fridman (2014), Mazenc, Niculescu, and Krstic (2012) and refer-
ences therein). Basically, these results involve the upper bound on
the time delay or the control gain values. On the other hand, the
presence of the plant model uncertainty makes the situation more
complex even for linear time invariant systems. A possible way to
treat this problem is making use of the high gain or Sliding Mode
(SM) control techniques (Utkin, Guldner, & Shi, 1999) which are
effective tools to reject the systemuncertainty. However, the direct
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implementation of these robust control techniques without taking
into account delays may lead to oscillations and even instability
of the closed-loop system (Fridman, Shustin, & Fridman, 1997). To
overcome this problem, a predictor-based approach that enables
to compensate for the time delay in the control input resulting
in the delay-free closed-loop system, can be applied. First, the
Smith predictor has been proposed in Smith (1957); however,
this frequency domain approach can be implemented for open-
loop stable systems only. To extend this approach to the general
case of MIMO open-loop unstable systems, the Finite Spectrum
Assignment approach based on the solution of LTI system has
been proposed in Kwon and Pearson (1980) and Manitius and
Olbrot (1979). The stability of the closed-loop system with pre-
dictor in absence of disturbances has been analyzed in Furukawa
and Shimemura (1983), and an exhaustive analysis of predictive
control scheme can be found also in Krstic (2009). In the pres-
ence of disturbances, the predictor was successfully applied to
design SM controllers in Edwards and Spurgeon (1998), Polyakov
(2012) and Roh and Oh (1999). However, the matching condi-
tion fulfilled for the uncertainties in the original system does not
hold in the transformed delay-free (prediction) system with the
conventional SM algorithm (Nguang, 2001). To solve this prob-
lem, the integral SM control (Utkin et al., 1999) implementation
has been proposed in Loukianov, Espinosa-Guerra, Castillo-Toledo,
and Utkin (2005, 2006). This approach allows to preserve the
matching condition in the prediction system and, as a result, the
unknown perturbation effect is reduced. On the other hand, in
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Léchappé, Moulay, Plestan, Glumineau, and Chriette (2015), a new
predictive scheme has been designed permitting as well to reduce
the perturbation effect.

In this paper, a class of linear perturbed systems with delay
in the system state and the control input is considered, first, in
general case and then in Regular form (Loukianov & Utkin, 1981).
It is assumed that the time delay in the state vector is bigger
than in the control input vector and the uncertainties satisfy the
matching condition, as it is common in SM control design. A new
predictive SM control scheme is designed using the advantages of
the predictor (Léchappé et al., 2015) and the integral SM predictive
controller (Loukianov et al., 2006). This scheme includes a predic-
tor. The predictor is proposed in the form of Léchappé et al. (2015)
to stabilize the SM dynamics. To design a stabilizing controller and
achieve the robustness of the closed-loop predictive systemwhere
the matching condition is preserved contrary to the conventional
SM controller (Polyakov, 2012; Roh & Oh, 1999), the integral SM
predictive control technique (Loukianov et al., 2006) combined
with super-twisting algorithm (Fridman & Levant, 2002; Moreno
& Osorio, 2008) is used.

The stability analysis shows that in this case, even though the
matching condition is preserved, the proposed control scheme
cannot totally compensate for the unknownarbitrary perturbation.
However, the perturbation effect can be reduced compared to
Loukianov et al. (2006). Moreover, this scheme enables to totally
compensate the unknown constant perturbation.

So, the proposed new predictive SM control scheme which
reduces the matched disturbance effect in a linear system with
delay in the state and input vectors can be considered as the main
contribution of this paper.

The paper is organized as follows. In Section 2, the problem
statement including assumptions is presented. The predictive con-
trol scheme is designed, first, for general class of linear systems
in Section 3, and, then, for systems presented in Regular form in
Section 4, including SM control design (Sections 3.1 and 4.1). The
SM dynamics stability is analyzed in Section 3.2 and compared
with the previous work in Section 3.3. To clarify the proposed
control scheme, one example is presented in Section 4.2.

2. Problem statement

Consider an uncertain linear system with time delays de-
scribed by

ẋ(t) = Ax(t) + Dx(t − τ0) + Bu(t − τ1)

+ f (x(t), x(t − τ0), t),
(1)

with the initial conditions given by, x(t) = ϕ0(t), ∀t ∈ [t0 −

τ0, t0], u(t) = ϕ1(t) ∀t ∈ [t0 − τ1, t0], where x ∈ Rn and u ∈

Rm are the state and control vectors, respectively; the unknown
function f ∈ Rn represents model uncertainties including external
disturbances; A, D and B are matrices of appropriate dimensions,
rank (B) = m; τ0 and τ1 are time delays, τ0 ≥ τ1.

In this paper, the objective is to design a robust controller in an
uncertain scenario (1). Therefore, the following assumptions are
required:

Assumption 1. The pair (A, B) is stabilizable, and the state x is
available for the measurement.

Assumption 2. The unknown function f (x(t), x(t−τ0), t) is locally
Lipshitz and satisfies the matching condition (Drazenovic, 1969),
namely, f (x(t), x(t − τ0), t) = Bα(x(t), x(t − τ0), t); where function
α(x(t), x(t − τ0), t), α ∈ Rm is bounded.

Assumption 3. There is a matrix D1 ∈ Rm×n such that D = BD1
holds.

Assumption 4. All eigenvalues of matrices M−1
1 M2 are located

inside the open unit circle, whereM1 andM2 are

M1 = BT (I + eAτ1 )B and M2 = BT eAτ1B.

Assumption 5. The time delays τ0 and τ1 are constant and known.

3. Predictive control scheme for general case

3.1. SM control design

To eliminate the known delayed term D1x(t − τ0) and robustly
stabilize the system (1) under Assumption 3, the control law is
redefined following the integral SM philosophy as
u(t) = u0(t) + u1(t) + u2,

u2(t) = −D1x(t − ∆), ∆ = τ0 − τ1
(2)

where u0(t) ∈ Rm is the nominal control, and u1(t) ∈ Rm will be
designed to reject the perturbation term α(·). Substituting (2) into
(1), yields

ẋ(t) = Ax(t) + B[u0(t − τ1) + u1(t − τ1)
+ α(x(t), x(t − τ0), t)]. (3)

An integral sliding function s1(t) ∈ Rm is formulated of the form

s1(t) = Gxp(t) + w(t), w(0) = −Gxp(0), (4)

with the predictive state xp(t) ∈ Rn of the system (3) (the predictor
is presented in Léchappé et al. (2015))
xp(t) = ξ (t) + x(t) − ξ (t − τ1),

ξ (t) = eAτ1x(t) +

∫ 0

−τ1

e−AθBu0(t + θ )dθ,
(5)

where G ∈ Rm×n is a design matrix, and w(t) is defined by
ẇ(t) = − G[Axp(t) + Bu0(t)]

+ (GB + GeAτ1B)[u1(t) − u1(t − τ1)]

− GeAτ1B[u1(t − τ1) − u1(t − 2τ1)].

(6)

Taking the time derivative of (4) and using (3), (5) and (6), yields

ṡ1(t) = (GB + GeAτ1B)[u1(t)

+ α(x(t), x(t − τ0), t)] − GeAτ1B[u1(t − τ1)

+ α(x(t − τ1), t − τ1, x(t − τ0 − τ1), t − τ1)].

(7)

To induce a sliding motion on s1(t) = 0, the control component
u1(t) is selected using super-twisting algorithm (Moreno & Osorio,
2008; Nagesh & Edwards, 2014) as

u1(t) = M−1
1 [−k1

s1(t)

∥s1(t)∥
1
2

− k2s1(t) + v(t)

+ M2u1(t − τ1)]

v̇(t) = − k3
s1(t)

∥s1(t)∥
− k4s1(t),

(8)

where k1, k2, k3 and k4 are the control gains, G = BT ,

M1 = BTB + BT eAτ1B and M2 = BT eAτ1B. (9)

Substituting control (8) into (7), results in

ṡ1(t) = − k1
s1(t)

∥s1(t)∥
1
2

− k2s1(t) + v(t)

+ ∆α(x(t), x(t − τ0), t)

v̇(t) = − k3
s1(t)

∥s1(t)∥
− k4s1(t),

(10)
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