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a b s t r a c t

Methods for scattering-based stabilization of interconnections of nonlinear systems are developed for the
case where the subsystems are non-planar conic. The notion of non-planar conicity is a generalization of
the conicity notion to the case where the cone’s center is a subspace with dimension greater than one.
For a feedback interconnection of non-planar conic systems, a graph separation condition for finite-gain
L2-stability is derived in terms of relationship between the maximal singular value of the product of
projection operators onto the subsystems’ central subspaces and the radii of the corresponding cones.
Furthermore, a new generalized scattering transformation is developed that allows for rendering the
dynamic characteristics of a non-planar conic system into an arbitrary prescribed cone with compatible
dimensions. The new scattering transformation is subsequently applied to the problem of stabilization
of interconnections of non-planar conic systems, with and without communication delays. Applications
of the developed scattering-based stabilization methods to the problems of stable robot–environment
interaction and bilateral teleoperationwithmultiple heterogeneous communication delays are discussed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Scattering transformation techniques have been used in the
theory of electric networks, particularly transmission lines and
networks with delays, since the middle of twentieth century
(Ronald Wohlers, 1969). In the control systems area, applica-
tions of the scattering transformation can be traced back to work
(Anderson, 1972) where a similar construction was used to es-
tablish relationship between passivity and small-gain theorems.
In Anderson and Spong (1989), the scattering transformation was
applied to the problem of stabilization of force reflecting tele-
operators in the presence of communication delays. The latter
work, together with parallel developments presented in Niemeyer
and Slotine (1991), have made a very substantial impact on the
bilateral teleoperation area, where the scattering-based stabiliza-
tion is currently among the most popular methods to deal with
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instabilities caused by force reflection in the presence of com-
munication delays (Hokayem & Spong, 2006; Niemeyer & Slotine,
2004; Nuño, Basañez, & Ortega, 2011; Secchi, Ferraguti, & Fantuzzi,
2016; Stramigioli, van der Schaft, Maschke, & Melchiorri, 2002;
Sun, Naghdy, & Du, 2016). The stabilizing effect of the scattering
transformation is based on the fact that a conventional scattering
operator transforms a passive system into a system with L2-gain
less than or equal to one (Anderson & Spong, 1989, Theorem 3.1).
Assuming all involved subsystems are passive, scattering transfor-
mations implemented on both sides of a communication channel
transform the corresponding subsystems into those with gain less
than or equal to one; stability of the overall system then follows
from the small-gain arguments.

Extensions of the scattering transformation techniques to the
case of interconnections of not necessarily passive systems were
recently proposed in Hirche, Matiakis, and Buss (2009) and Po-
lushin (2014). These extensions are based on the observation that
the conventional scattering transformation is essentially an op-
erator of rotation by π/4 in the space of input–output variables.
Introduction of more general scattering operators that include
arbitrary rotations and input–output gains results in substantial
generalizations of the scattering-based stabilization techniques. In
particular, the methods developed in Polushin (2014) allow for
stabilization of interconnections of arbitrary planar conic systems,
with and without communication delays. The notion of a conic
system was introduced and originally studied in 1960s by Zames
(1966); extensions to the case of nonlinear conic sectors were
subsequently developed in Safonov (1980) and Teel (1996). Conic
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systems are nonlinear dynamical systemswhose input–output be-
havior belongs to a dynamic cone. The notion of conicity studied in
Zames (1966) was essentially planar in the sense that the dynamic
cones were characterized by two scalar parameters which repre-
sent a conic sector on a plane. Even in this planar case, the notion
of conicity is fairly general; in particular, it includes different ver-
sions of passivity, finite-gain L2-stability, etc., as special cases. The
stabilizationmethods developed in Polushin (2014) were based on
a new generalized version of the scattering transformation which
allows for rendering the dynamic input–output characteristics of
an arbitrary planar conic system into a prescribed conic sector.
Stability of interconnections can consequently be achieved by de-
signing scattering transformation(s) that render the subsystems’s
cones in such a way that an appropriate stability condition (i.e., a
graph separation condition in the non-delayed case, or a small-gain
condition in the presence of communication delays) is satisfied.

The class of planar conic systems, however, is quite limited in
certain aspects. One particularly significant limitation is that, with
the exception of systems with finite L2-gain, planar conic systems
are required to have an equal number of inputs and outputs.
The corresponding methods, including scattering-based design,
are therefore limited to those systems where the number of inputs
matches the number of outputs. Even in the latter case, description
of amulti-input–multi-output system’s cone in terms of two scalar
parameters is typically overly crude; as a result, the methods that
use such a parameterization lack flexibility, which in turn leads
to limited applicability and analysis/design conservatism. Another
substantial limitation of the planar conicity is that a feedback inter-
connection of two planar conic systems is, generally speaking, not
a planar conic system; in fact, calculating a planar approximation
of the corresponding dynamic cone can be a nontrivial task. The
latter fact makes it difficult to use the notion of planar conicity
for analysis of complex interconnections. All the above, in turn,
limits the applicability of the existing scattering-basedmethods to
stabilization of interconnections of general nonlinear systems.

In this paper, we develop an approach to scattering-based sta-
bilization that removes all the limitations described above. The
approach is based on an extension of the conicity notion to non-
planar case, and subsequent development of a new generalized
scattering transformation applicable to non-planar conic systems.
The notion of non-planar conicity is based on an appropriate
generalization of the planar conicity to the case where the cone’s
center is a subspace with dimension that can be greater than one.
This generalization is quite substantial; in fact, the class of non-
planar conic systems coincides with that of dissipative systems
with quadratic supply rates (or (Q , S, R)-dissipative systems (Hill
& Moylan, 1977)). In particular, for a given quadratic supply rate,
the parameters of the corresponding non-planar cone can be cal-
culated using the procedure presented below in Section 2.1. For a
feedback interconnection of two non-planar conic systems, a graph
separation condition for finite-gain L2-stability is derived in terms
of relationship between the maximal singular value of the product
of projection operators onto the subsystems’ central subspaces
and the radii of the corresponding cones. Subsequently, a new
generalized scattering transformation is developed that allows for
rendering the dynamic characteristics of a non-planar conic system
into an arbitrary prescribed conewith compatible dimensions. This
property of the new scattering transformation, in turn, allows for
its effective use in the problem of stabilization of interconnections
of non-planar conic systems, with andwithout communication de-
lays. Applications of the developed scattering-based stabilization
methods to the problems of stable robot–environment interaction
and bilateral teleoperation with multiple heterogeneous commu-
nication delays are also described.

The paper has the following structure. In Section 2, the notion
of non-planar conicity is introduced, and a procedure for calcu-
lation of the parameters of the (non-planar) dynamic cone for a

dissipative system with a quadratic supply rate is described. In
Section 3, a graph separation condition for finite-gain L2-stability
of interconnection of two non-planar conic systems is presented.
In Section 4, a new generalized scattering transformation is de-
veloped that allows for rendering the input–output dynamics of
a non-planar conic system into an arbitrary prescribed cone. The
scattering-based stabilization of interconnections of non-planar
conic systems in the absence of communication delays is addressed
in Section 5; application of this method to the problem of stable
robot–environment interaction is discussed in Section 5.1. In Sec-
tion 6, a scattering-based method for stabilization of non-planar
conic systems’ interconnections in the presence ofmultiple hetero-
geneous communication delays is developed; application of this
method to bilateral teleoperation with communication delays is
described in Section 6.1. Concluding remarks are given in Section 7.
Preliminary versions of some of the results presented in Sections 2,
3 were reported in the conference paper (Usova, Polushin, & Patel,
2016), while preliminary versions of some of the results in Sec-
tions 4, 5 were presented in Usova, Polushin, and Patel (2017).

2. Non-planar conicity

Consider a nonlinear system of the form

Σ :

{
ẋ = f (x, η),
y = h(x, η), (1)

where x ∈ Rn is the state, η ∈ Rm the input, and y ∈ Rp the
output of system (1). The functions f (·, ·), h(·, ·) are locally Lipschitz
continuous in their arguments. A system (1) is said to be dissipative
with respect to supply ratew : Rp

×Rm
→ R if there exists a storage

function V : Rn
→ R+ such that the inequality

V (x(t1)) − V (x(t0)) ≤

∫ t1

t0

w (y(τ ), η(τ )) dτ

holds along the trajectories of the system (1) for any t1 ≥ t0, any
initial state x(t0), and an arbitrary admissible control input η(t),
t ∈ [t0, t1). In the definition below, R/π̃ denotes the quotient set
(i.e., the set of equivalence classes) ofRwith respect to equivalence
relation π̃ := {φ1 ∼ φ2 iff φ1 − φ2 = kπ, k ∈ Z}, where Z :=

{. . . , −1, 0, 1, . . .} is the set of integer numbers.

Definition 1. A system Σ of the form (1) with m = p is said
to be (planar) interior conic with respect to the cone with center
φc ∈ R/π̃ and radius φr ∈ (0, π/2) if it is dissipative with supply
rate

w (y, η) =
[
ηT yT

]
W (φc, φr)

[
ηT yT

]T
, (2)

where matrix W (φc, φr ) is determined by the formula

W (φc, φr) :=

λ

2
·

[
cos 2φc − cos 2φr sin 2φc

sin 2φc − cos 2φc − cos 2φr

]
⊗ Im, (3)

where ⊗ denotes the Kronecker product, and λ > 0.

Representation (2), (3) of the supply rate of a conic system in
terms of the cone’s center φc and its radius φr is from Polushin
(2014). There also exists a somewhatmore conventional represen-
tation of the supply rate in terms of the cone’s boundaries a, b ∈

R ∪ {±∞}, a ≤ b, which was used for example in the classical
work (Zames, 1966). Specifically, a system of the form (1) with
m = p is interior [a, b]-conic if it is dissipative with respect to the
supply rate

w(y, η) := (bη − y)T (y − aη) . (4)
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