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a b s t r a c t

In this paper, we design an optimal energy cost controller for linear systems asymptotic consensus given
the topology of the graph. The controller depends only on relative information of the agents. Since finding
the control gain for such controller is hard, we focus on finding an optimal controller among a classical
family of controllers which is based on Algebraic Riccati Equation (ARE) and guarantees asymptotic
consensus. Through analysis, we find that the energy cost is bounded by an interval and hence we
minimize the upper bound. In order to do that, there are two classes of variables that need to be optimized:
the control gain and the edge weights of the graph and are hence designed from two perspectives. A
suboptimal control gain is obtained by choosingQ = 0 in the ARE. Negative edgeweights are allowed, and
the problem is formulated as a Semi-definite Programming (SDP) problem. Having negative edge weights
means that ‘‘competitions’’ between the agents are allowed. The motivation behind this setting is to have
a better system performance.We provide a different proof compared to Thunberg and Hu (2016) from the
angle of optimization and show that the lowest control energy cost is reachedwhen the graph is complete
andwith equal edgeweights. Furthermore, two sufficient conditions for the existence of negative optimal
edge weights realization are given. In addition, we provide a distributed way of solving the SDP problem
when the graph topology is regular.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consensus is an important topic in the research of cooperative
control for multi-agent. The goal is to let the states or the outputs
of all agents become the same by control laws that depend on
the information of the agent and its neighbours. In this paper, we
consider the case of asymptotic consensus for linear systems. The
goal of this paper is to design distributed controllers using only the
relative information between the agents and with minimal control
energy cost such that all the system states will eventually become
the same as time goes infinity.

In this paper, we focus on designing the optimal energy cost
controller for the linear systems so that they can reach asymptotic
consensus. It is well-known that the asymptotic consensus for
linear systems is equivalent to regulating N − 1 systems with the
dynamics ẋi = Axi + λiBui, 2 ≤ i ≤ N , where λi is the ith
smallest eigenvalue of the Laplacian matrix, see Fax and Murray
(2004) and Zhang, Lewis, and Das (2011). The area is well-studied,
for example, in Borrelli and Keviczky (2008), the authors design
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linear quadratic regulators for identical linear systems when the
graph topology is given. Though it is quite similar to what we
undertake here, but as mentioned above, the equivalent problem
is to regulate N − 1 different systems with minimum energy, and
hence is not the same. The authors of Rogge, Suykens, and Aeyels
(2010) consider the problem as a quadratic optimal control prob-
lem on a ring network while we consider the case of a graph with
arbitrary topologies. Augmented Lagrangian approach is used in
Lin, Fardad, and Jovanovic (2011) to design a structured distributed
controller so that the H2 norm of the noisy systems is minimized.
Deshpande, Menon, Edwards, and Postlethwaite (2011) consider
a similar problem and use a two-step approach to design the
control law. But their controller does not only use relative infor-
mation of the agents, but also use the agents’ own states. Cao and
Ren (2010) study the optimal consensus of the single-integrators
for both discrete-time and continuous-time cases. In Lin, Fardad,
and Jovanović (2013), alternating direction method of multipliers
(ADMM) is used tominimize theH2 norm so that an optimal sparse
feedback gain is obtained. In Thunberg and Hu (2016), a ‘‘topol-
ogy free’’ control energy minimization problem is considered and
the distributed energy-optimal control corresponds to a complete
graph with equal edge weights.

On the other hand, distributed optimization has attracted great
attention these years due to the wide applications in the network.
Compared to the abundant results on distributed optimization in
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real vector spaces, for instances, Annergren, Pakazad, Hansson,
and Wahlberg (2014), Lou, Shi, Johansson, and Hong (2014), Nedic
and Ozdaglar (2009), Nedic, Ozdaglar, and Parrilo (2010) and Yi,
Hong, and Liu (2015), the results on distributed SDP still remain
limited. Dall’Anese, Zhu, and Giannakis (2013) considered an op-
timal power flow problem in power grids and relax it into an SDP
problem. Then ADMM is used to solve the problem in a distributed
manner. In Simonetto and Leus (2014), a sensor localization prob-
lem is considered. Relaxation towards an SDP and ADMM is used to
solve the problem distributedly as well. Pakazad, Hansson, Ander-
sen, and Rantzer (2014) analyse the robustness of interconnected
uncertain systems and linear matrix inequalities (LMIs) are refor-
mulated in SDP. Chordal sparsity structure is assumed among the
datamatrices of the SDP andhence the problem is decomposed and
solved distributedly using proximal splitting method. In Pakazad,
Hansson, Andersen, and Rantzer (2015), coupled SDPs with tree
structures are considered. A distributed primal–dual interior point
method is proposed to solve the coupled SDPs. The aforementioned
work all utilize the idea of ‘‘decomposition’’ somehow but in this
paper we treat the SDP in a different manner: reaching an optimal
consensus in the intersection of convex feasible sets. Also, what
makes our work different from existing distributed optimization
problem is that our problem motivates from optimizing a pa-
rameter of a graph and the communication network of the dis-
tributed optimization algorithm is actually the physical network
itself, while most distributed optimization algorithms relax and
decompose the original problem and ‘‘design’’ the communication
network according to the structure of the decomposed problem,
see Pakazad et al. (2015) as an example.

The main contribution of this paper is the construction of an
optimal energy controller that depends only on the relative in-
formation between the agents. The controller has two classes of
variables that need to be determined: the control gain and the
edge weights of the graph. Similar to Borrelli and Keviczky (2008),
computing the optimal control gain for the controller is hard, thus
we focus on finding an optimal controller among a classical family
of controller designs based on ARE and guarantees asymptotic
consensus. Through analysis, we found that the energy cost is
bounded by an interval and hence we minimize the upper bound.
A suboptimal control gain is obtained by choosing Q = 0 in
the ARE; the edge weights of the graph is optimized by solving
an underlying SDP. The controller that we designed enjoy several
favourable properties:

(1) The controller coincides with the optimal control in Thun-
berg and Hu (2016) when the graph is complete. It has
been pointed out in Thunberg and Hu (2016) that any other
distributed control laws constructed by Laplacian matrices
that do not correspond to complete graphs with equal edge
weights are suboptimal.

(2) When optimizing the edge weights, ‘‘competitions’’ are al-
lowed between the connected agents. By doing so, the fea-
sible region of the optimization problem is enlarged, and
hence a smaller control energy cost might be obtained. We
offer two sufficient conditions for whenwill ‘‘competitions’’
happen between agents. These two conditions help to de-
termine whether the two agents will compete if we add a
connection between thembased on the old optimal solution.

(3) When the graph topology is regular, namely, every node
has the same number of neighbours, the controller can be
calculated in a distributed manner.

The rest of this paper is organized as follows. In Section 2,
some preliminaries and notations are presented. In Section 3 we
introduce the problem formulation. The design of the control gain
is presented in Sections 4.1 and 4.2. In Section 4.3, the edgeweights

design is formulated as an SDP problem and we provide a differ-
ent proof compared to Thunberg and Hu (2016) from the angle
of optimization and show that the lowest control energy cost is
reached when the graph is complete and with equal edge weights.
Two sufficient conditions on the existence of the negative optimal
edge weight are presented. In Section 4.4, a distributed way of
computing the optimal edge weights is presented when the graph
is regular. Finally, we conclude the paper and describe some future
work in Section 5.

2. Preliminaries

We denote 1 as an N dimensional all-one column vector. 0
is denoted as an N dimensional all-zero matrix. The element on
the ith row and jth column of any matrix D is expressed as [D]ij.
D1 ⪰ D2 and G1 ⪯ G2 mean that D1 − D2 and G2 − G1 are positive
semi-definite. ⊗ denotes the Kronecker product. ∥ · ∥ denotes
2-norm of matrices or vectors. ∥ · ∥F denotes the Frobenius norm
of a matrix. We use |·| to denote the number of the elements of a
set. And any notation with the superscript ∗ denotes the optimal
solution to the corresponding optimization problem. tr(·) denotes
the trace of a matrix. If D,G ∈ Sn

+
are positive definite matrices,

then tr(DG) is the inner-product between D and G.
An edge-weighted undirected graph G(V, E,W) is composed of

a node set V = {1, 2, . . . ,N}, an edge set (i, j) ∈ E, i, j ∈ V which
describes the connection topology between the nodes and the edge
weight set wij ∈ W, i, j ∈ V which includes all the weights of
the corresponding edges. To abbreviate the notation, we label the
edges with numbers. For example, an edge with label l is denoted
as l ∈ E . On the other hand, seen from the nodes’ perspective, the
set of edges that is connected to node i is denoted as E(i), which
can be interpreted as communication channels of node i. Note that
E =

⋃
i∈VE(i). Similarly, the set of the edge weights belong to

node i is denoted asW(i).N (i) denotes the neighbour vertices set of
node i.

Note that in this paper, we consider undirected graphs, hence
the edge-weighted Laplacian matrix Lw is symmetric and de-
fined as

[Lw]ij =

⎧⎪⎨⎪⎩
∑

l

wil if i = j and (i, l) ∈ E

−wij if i ̸= j and (i, j) ∈ E
0 otherwise

⇔ Lw =

∑
k∈E

wkEk,

where k is the label of the edges, wk ∈ W, ∀k ∈ E are the edge
weights. If node i and j are connected via edge k, then [Ek]ii =
[Ek]jj = 1, [Ek]ij = [Ek]ji = −1, and the other elements of Ek are
zero. For a connected graph, the eigenvalues of Lw is denoted as
0 = λ1 < λ2 ≤ · · · ≤ λN .

For any symmetric matrix G ∈ Sn, svec(G) is defined as svec(G)
= [G11,

√
2G21, . . . ,

√
2Gn1,G22,

√
2G32, . . . ,

√
2Gn1, . . . ,Gnn]

T . It
follows from the above definition that tr(DG) = svec(D)T svec(G),
∀D,G ∈ Sn.

The Symmetric Kronecker Product between two matrices G and
D is defined by the following identity

(R1⊗sR2)svec(G) =
1
2
svec(R2GRT

1 + R1GRT
2),

where G ∈ Sn, but R1 and R2 is not necessarily symmetric. For
more details about svec(·) and Symmetric Kronecker Product can
be found in Alizadeh, Haeberly, and Overton (1998) and Schäcke
(2013).
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