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a b s t r a c t

In this paper, a distributed extremum seeking control technique is proposed to solve a class of real-
time optimization problems over a network of dynamic agents with unknown unstable dynamics. Each
dynamic agent measures a cost that is shared over a network. A dynamic average consensus approach is
used to provide each agent with an estimate of the total network cost. The extremum seeking controller
operates at each agent to allow each agent to contribute to the optimization of the total cost, in a coop-
erative fashion. The extremum seeking control technique is based on a proportional–integral approach
that provides improvements in transient performance over standard techniques. The contribution of the
proposed technique is to solve the simultaneous stabilization and real-time optimization. A dynamic
network simulation example is presented to demonstrate the effectiveness of the technique.

© 2018 Published by Elsevier Ltd.

1. Introduction

Real-Time Optimization (RTO) is a process automation technol-
ogywhose objective is to predict the economically optimal process
operating policy in the near term. Extremum-seeking control (ESC)
is an RTO control mechanism that is applicable when no exact
model description is available, but where the objective function
to be optimized is available from process measurements. This
approach, which dates back to the 1920s (Leblanc, 1922), provides
a mechanism by which a system can be driven to the optimum
of a measured variable of interest (Tan, Moase, Manzie, Nešić, &
Mareels, 2010). Many researchers have considered various ESC
approaches over the last years (see Adetola and Guay (2007), Fu
and Özgüner (2011), Ghaffari, Krstić, and Nešić (2012), Guay and
Dochain (2013), Krstić (2000), Krstić and Wang (2000), Moase and
Manzie (2012), Moase, Manzie, and Brear (2010), Nešić, Moham-
madi, and Manzie (2010), Tan, Nešić, and Mareels (2006), Zhang
and Ordóñez (2009)).

✩ Thematerial in this paperwill be partially presented at the 9th IFAC Symposium
onAdvanced Control of Chemical Processes, June 7–10, 2015,Whistler, Canada. This
paper was recommended for publication in revised form by Associate Editor Tamas
Keviczky under the direction of Editor Christos G. Cassandras.
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When dealing with complex dynamical systems, it is generally
recognized that overall process objectives are difficult to achieve
due to the computational complexity associated with centralized
approaches. Thus, a decentralized or a distributed optimization
approach is usually favoured in large-scale RTO systems design.
In this approach, global process objectives are achieved by solving
several local RTO subproblems. The distributed optimization task
is said to be non-cooperativewhen each local RTO achieves its local
optimization objectives. Non-cooperative RTOproblems have been
tackled using ESC by several researchers (Frihauf, Krstić, & Başar,
2011, 2012; Ghods, Frihauf, & Krstić, 2010; Stankovic & Stipanović,
2009). A Nash-seeking technique for the design of distributed op-
timization system is presented in Kutadinata, Moase, and Manzie
(2015). This approach proposes a methodology for the design of
dither signals in large networks. The distributed optimization task
can also be cooperative when the local RTOs coordinate actions to
optimize the sum of their assigned costs. A particular class of dis-
tributed cooperative optimizations has been the subject of several
studies (Bertsekas & J.Tsitsiklis, 1989; Johansson, Rabi, & Johans-
son, 2009; Nedić & Ozdaglar, 2009). For a class of unconstrained
optimization problems, it is shown in Nedić and Ozdaglar (2009)
that it is possible to achieve overall system objectives by solving
local problems and communicating the optimization results via
the network. Few ESC techniques have been proposed to solve
decentralized and distributed optimization problems (Kvaternik &
Patel, 2012; Li, Qu, & Ingram, 2011; Poveda & Quijano, 2013). For
constrained optimization problems, the Alternating DirectMethod
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of Multipliers (ADMM) can be used to solve distributed and coor-
dinated optimization problems (Boyd, Parikh, Chu, Peleato, & Eck-
stein, 2011; Schizas, Ribeiro, & Giannakis, 2008). A constrained dis-
tributed optimization approach was presented in Nedić, Ozdaglar,
and Parrilo (2010) where a projection operator approach is used.
The approach can effectively solve distributed optimization prob-
lems subject to a known computable projection to a known convex
set. Extensions of cooperative optimization techniques to more
general network architectures have been proposed in Gharesifard
and Cortés (2014) and Nedić and Olshevsky (2013).

The control of networks of multi-agent systems with unknown
dynamics has been treated in a number of studies. Lu and Chen
(2005) have presented a consensus approach for a class of time-
varying dynamical networks with unknown stable, decoupled
system dynamics and first order agent dynamics with dynamic
coupling. An extension to networks of second-order systems with
unknown, decoupled, agent dynamics was presented in Su, Chen,
Wang, and Lin (2011). Finite-time consensus over networks of
unknown stable, decoupled, first-order agent dynamics was pro-
posed in Cao and Ren (2014). Chen, Li, Ren, and Wen (2014) have
used functional approximations to develop an adaptive consensus
for multi-agents with unknown, but identical, control directions.
An adaptive distributed synchronization approach was proposed
in Das and Lewis (2010) for a class of multi-agent systemswith un-
known and nonidentical dynamics subject to disturbances. Adap-
tive consensus for systems with unknown higher-order decoupled
dynamicswas presented in Zhang and Lewis (2012). Agent dynam-
ics with heterogeneous matching uncertainties were treated in Li,
Duan, and Lewis (2014). In general, existing design approaches for
multi-agent systems with unknown agent dynamics are limited
to multi-agent dynamics where the only dynamic coupling arises
from consensus or communication protocols.

This study proposes the design of a method of distributed
optimization over networks of dynamic agents with unknown
coupled unstable dynamics. The network dynamics are described
by a large-scale unknown unstable nonlinear dynamical system
operating over a local actuator and sensor communication net-
work. Each agent has access to a local sensor measurement and
a certain number of actuators. It is also able to communicate its
sensor information with neighbouring agents. The local input–
output dynamics of each agent are assumed to be unknown and
can be affected by actuator variables and state variables from the
network dynamics. To the best of our knowledge this class ofmulti-
agent dynamical systems has not been treated in the literature.
A distributed extremum-seeking controller is proposed to solve
the optimization problem. This paper proposes a proportional–
integral ESC (PIESC) design technique, initially proposed in Guay
and Dochain (2014), that is implemented in a distributed environ-
ment to design cooperative systems to solve a distributed opti-
mization problem over networks of unknown unstable dynamic
agents. The main contribution of this paper is to show that the
distributed PIESC can be effectively applied to the design of real-
time optimization control systems that can stabilize the network
of unstable dynamics to the unknown optimum of the total plant
cost.

This paper is organized as follows. The problem is formulated
in Section 2. In Section 3, the distributed ESC control system is
presented. A simulation example is presented in Section 4. We
conclude in Section 5.

2. Problem description

We consider a network of nonlinear systems of the form:

ẋi = fi(x, ξ ) + gi(x, ξ )u (1)
yi = hi(x) (2)

where x = [xT1, . . . , x
T
p ]

T
∈ Rn is the vector of state variables,

u ∈ Rm is the vector of input variables for the entire network, and
ξ ∈ Rq is a vector of global variables, assumed to be unknown
and unmeasured. Each xi has dimension ni with

∑p
i=1ni = n.

The dynamics of each agent i ∈ {1, . . . , p} are governed by the
dynamics (1) with local cost (2). It is assumed that each agent can
only manipulate the local input variables ui ∈ Rmi , with

∑p
i=1mi =

m. The sets of inputs available at each node are assumed to be
mutually exclusive. It is assumed that the vector fields fi(x, ξ ) ∈

Rni and gi(x, ξ ) ∈ Rni×m are unknown smooth vector valued
functions of x and ξ and that the functions hi(x) are unknown
smooth functions of x.

The overall network cost function is the sumof all the individual
costs:

J(x) =

p∑
i=1

hi(x). (3)

The objective is to steer the system to the equilibrium x∗ andu∗ that
achieves theminimum value of Y = J(x) using onlymeasurements
of the local cost and a communication network between agents.

The total network dynamics can be written in the form:

ξ̇ = ψ(x, ξ ) (4)
ẋ = f (x, ξ ) + G(x, ξ )u (5)

with global cost

Y = J(x). (6)

Note that ξ represents the zero dynamics of the system, and for any
nonlinear system there exists an appropriate state diffeomorphism
which converts the system into the form (4)–(5). The drift vector
field f (x, ξ ) and the control vector fields, G(x, ξ ), are such that:

f (x, ξ ) =

⎡⎢⎣f1(x, ξ )
...

fp(x, ξ )

⎤⎥⎦ G(x, ξ ) =

⎡⎢⎣g1(x, ξ )
...

gp(x, ξ )

⎤⎥⎦
where G(x, ξ ) is a matrix valued function. The dynamics of the
global variables ξ are described by the unknown vector field
ψ(x, ξ ) : Rn

×Rq
→ Rq which is assumed to be a smooth function

of its arguments.
The equilibrium (or steady-state) network map is the vector

(x, ξ ) = (πx(u), πξ (u)) that solves the following equations:

ψ(πξ (u), πx(u)) = 0
f (πξ (u), πx(u)) + G(πξ (u), πx(u))u = 0.

The corresponding equilibrium cost function is given by:

Ye = J(πx(u)) = ℓ(u)

where ℓ = J ◦πx. At equilibrium, the problem is reduced to finding
the minimizer u∗ of Ye = ℓ(u).

In the following, we let D(u∗) ⊆ Rn+q represent a neighbour-
hood of the equilibrium (x, ξ ) = (πx(u∗), πξ (u∗)) and we let U ∈

Rm be a neighbourhood of u∗.

Assumption 1. For all u ∈ U , there exist equilibrium values
xe = πx(u) and ξe = πξ (u) such that (xe, ξe) ∈ D(u∗).

The following assumption concerning the steady-state cost
function ℓ(u) is required.

Assumption 2. The equilibrium steady-statemap ℓ(u) is such that:

(1) there exists a set Ū ⊂ U with u∗
∈ Ū such that ℓ(u) is

continuously differentiable ∀u ∈ Ū .
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