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a b s t r a c t

We show via the nonlinear semigroup theory in L1(R) that the 1-D dynamic programming equation
associatedwith a stochastic optimal control problemwithmultiplicative noise has a uniquemild solution
in a sense to be made precise.
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1. Introduction

Consider the following stochastic optimal control problem

Minimize E
{∫ T

0

(
g
(
X(t)

)
+ h

(
u(t)

))
dt + g0

(
X(T )

)}
, (1)

subject to u ∈ U and to state equation{
dX = f (X) dt +

√
u σ (X) dW , for t ∈ (0, T )

X(0) = X0
(2)

where U is the set of all {Ft}t≥0-adapted processes u : (0, T ) →

R+
= [0,+∞] and W : R → R is an 1-D Wiener process in a

probability space (Ω,F,P), provided the natural filtration {Ft}t≥0.
Here X0 ∈ R, while X : [0, T ] → R is the strong solution to (2).
We would like to underline that the studied optimization problem
is related to the so called stochastic volatility models, used in
the financial framework, whose relevance has raised exponentially
during last years. In fact such models, contrarily to the constant
volatility ones as, e.g., the standard Black and Scholes approach, the
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Vasicek interest rate model, or the Cox–Ross–Rubinstein model,
allow to consider the more realistic situation of volatility levels
changing in time. As an example, the latter is the case of the
Heston model, see Heston (1993), where the variance is assumed
to be a stochastic process following a Cox–Ingersoll–Ross (CIR)
dynamic, see Cordoni and Di Persio (2013) or Cox, Ingersoll and
Ross (1985) and references therein for more recent related tech-
niques, as well as the case of the Constant Elasticity of Variance
(CEV) model, see Cox (1975), where the volatility is expressed
by a power of the underlying level, which is often referred as
a local stochastic volatility model. Other interesting examples,
which is the object of our ongoing research particularly from the
numerical point of view, include the Stochastic Alpha, Beta, Rho
(SABR) model, see, e.g., Hagan, Lesniewski, andWoodward (2015),
and models which are used to estimate the stochastic volatility
by exploiting directly markets data, as happens using the GARCH
approach and its variants. Within latter frameworks and due to
several macroeconomic crises that have affected different (type
of) financial markets worldwide, governments decided to become
active players of the game, as, e.g., in the recent case of the Volatility
Control Mechanism (VCM) established for the securities, resp. for
the derivatives,market established in August 2016, resp. in January
2017, within the Hong Kong Stock Exchange (HKEX) framework,
see, e.g., Stein (2006) and Stein (2012) and references therein for
other applications and examples. It should be said however that
problems of the form (1)–(2) are relevant in other applications as
well.

https://doi.org/10.1016/j.automatica.2018.02.008
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.02.008
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.02.008&domain=pdf
mailto:vb41@uaic.ro
mailto:c.benazzoli@unitn.it
mailto:luca.dipersio@univr.it
https://doi.org/10.1016/j.automatica.2018.02.008


V. Barbu et al. / Automatica 93 (2018) 520–526 521

Hypotheses:

(i) h : R → R is convex, continuous and h(u) ≥ α1 |u|2, ∀u ∈ R,
for some α1 > 0.

(ii) f ∈ C2
b (R), f

′′
∈ L1(R), g, g0 ∈ W 2,∞(R).

(iii) σ ∈ C1
b (R), and

|σ (x)| ≥ ρ > 0, ∀x ∈ R. (3)

In the following H∗ is the Legendre conjugate of function

H(u) = h(u) + I[0,∞)(u) =

{
h(u) if u ≥ 0 ,
+∞ otherwise.

Namely,

H∗(p) = sup{p u − H(u) : u ∈ R}, ∀p ∈ R. (4)

We have ∂H∗(p) = (∂h + N[0,∞))−1p, where ∂ is the sub-
differential symbol, and N[0,∞) is the normal cone to [0,∞). This
yields

0 ≤ ∂H∗(p) ≤ C(|p| + 1) , ∀p ∈ R . (5)

We denote also by j the potential of H∗, that is

j(r) =

∫ r

0
H∗(p) dp, ∀r ∈ R.

The dynamic programming equation corresponding to the
stochastic optimal control problem (1) is given by (see, e.g., Flem-
ing & Rishel, 2012; Øksendal, 2003),⎧⎪⎨⎪⎩
ϕt (t, x) + min

u

{1
2
σ 2 ϕxx(t, x) u + H(u)

}
+ f (x)ϕx(t, x) + g(x) = 0, ∀t ∈ [0, T ], x ∈ R

ϕ(T , x) = g0(x), x ∈ R,

or equivalently⎧⎪⎨⎪⎩
ϕt (t, x) − H∗

(
−

1
2
σ 2 ϕxx(t, x)

)
+ f (x)ϕx(t, x)

+ g(x) = 0, ∀(t, x) ∈ [0, T ] × R
ϕ(T , x) = g0(x), x ∈ R .

(6)

Moreover, if ϕ is a smooth solution to (1) the associated feedback
controller

u(t) = argmin
u

{1
2
σ 2 ϕxx

(
t, X(t)

)
u + H(u)

}
, (7)

is optimal for problem (1).
We set ψ = ϕx and replace Eq. (6) by⎧⎪⎨⎪⎩
ψt (t, x) −

(
H∗

(
−

1
2
σ 2 ψx(t, x)

))
x + (f (x)ψ(t, x))x

+ g ′(x) = 0, ∀(t, x) ∈ [0, T ] × R
ψ(T , x) = g ′

0(x), x ∈ R .

(8)

Up to our knowledge, in literature the rigorous treatment of
existence theory for equations of this form has been shown so
far within the theory of viscosity solutions only. (See, e.g., Cran-
dall, Ishii, & Lions, 1992.) However, the known existence results
for viscosity solutions are not directly applicable in the present
case. Here we shall exploit a different approach, namely we use
a suitable transformation aiming at reducing (8) to a one dimen-
sional Fokker–Planck equationwhich is then treated as a nonlinear
Cauchy problem in L1(R). As regards the non-degenerate hypothe-
sis (3) it will be later on dispensed by assuming more regularity on
function σ . (See Section 4.)

1.1. Notation and basic results

Weshall use the standard notation for functional spaces onR. In
particular Ck

b (R) is the space of functions y : R → R, differentiable

of order k and with bounded derivatives until order k. By Lp(R),
1 ≤ p ≤ ∞, we denote the classical space of Lebesgue-measurable
p-integrable functions on R with the norm ∥·∥p and by Hk(Rn),
W k,p(Rn), k = 1, 2, the standard Sobolev spaces on Rn, n = 1, 2.
Denote by ⟨·, ·⟩2 the scalar product of L2(R). We set also yx = y′

=

∂y/∂x, yt = ∂y/∂t , yxx = ∂2y/∂x2, for x ∈ R. By D′(Rn) we denote
the space of Schwartz distributions on Rn.

Definition 1.1 (Accretive Operator). Given a Banach space X , a
nonlinear operator A from X to itself, with domain D(A), is said
to be accretive if ∀ui ∈ D(A),∀vi ∈ A ui, i = 1, 2, there exists
η ∈ J(u1 − u2) such that

X ⟨v1 − v2, η⟩X ′ ≥ 0 , (9)

where X ′ is the dual space of X , X ⟨·, ·⟩X ′ is the duality pairing and
J : X → X ′ is the duality mapping of X . (See, e.g., Barbu, 2010.)

An accretive operator A is said to bem-accretive if R(λ I+A) = X
for all (equivalently some) λ > 0, while it is said to be quasi-m-
accretive if there is λ0 ∈ R such that λ0 I + A ism-accretive.

We refer to Barbu (2010) for basic results on m-accretive oper-
ators in Banach spaces and the corresponding associated Cauchy
problem.

2. Existence results

We set

y(t, x) = −ψx(T − t, x), ∀t ∈ [0, T ], x ∈ R, (10)

and we rewrite Eq. (8) as⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt (t, x) −

(
H∗

(σ 2

2
y(t, x)

))
xx

− f ′′(x)ψ(T − t, x)

− 2f ′(x)ψx(T − t, x) − f (x)ψxx(T − t, x) = −g ′′(x),
in (0, T ) × R

y(0, x) = −g ′′

0 (x), x ∈ R.

(11)

We set

Φ(z)(x) =

∫ x

−∞

z(ξ ) dξ , z ∈ L1(R). (12)

Then by (10) we have

ψ(t, x) = −Φ
(
y(T − t, x)

)
, ∀t ∈ [0, T ]. (13)

Setting

B y = −f ′′Φ(y) − 2 f ′y, ∀y ∈ L1(R) , (14)

and taking into account that f ′
∈ L∞(R), f ′′

∈ L1(R), we obtain for
the operator B the estimate

∥B y∥1 ≤ C ∥y∥1, ∀y ∈ L1(R) . (15)

Therefore Eq. (11) can be rewritten as follows⎧⎨⎩yt −

(
H∗

(σ 2

2
y
))

xx
+ f yx + B y = g1, in [0, T ] × R

y(0) = y0 ∈ L1(R)
, (16)

where y0 = −g ′′

0 and g1 = −g ′′ in D′(R).

Definition 2.1. The function y : [0, T ]×R → R is said to be amild
solution to Eq. (16) if y ∈ C([0, T ]; L1(R)) and

y(t) = lim
ϵ→0

yϵ(t) in L1(R), ∀t ∈ [0, T ] , (17)

yϵ(t) = yiϵ, for t ∈ [i ϵ, (i + 1) ϵ], i = 0, 1, . . . ,
[T
ϵ

]
− 1 =

[T
ϵ

]
,

(18)
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