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a b s t r a c t

In this paper we develop a method for learning nonlinear system models with multiple outputs and
inputs. We begin by modeling the errors of a nominal predictor of the system using a latent variable
framework. Then using the maximum likelihood principle we derive a criterion for learning the model.
The resulting optimization problem is tackled using a majorization–minimization approach. Finally, we
develop a convex majorization technique and show that it enables a recursive identification method. The
method learns parsimonious predictivemodels and is tested on both synthetic and real nonlinear systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the problem of learning a nonlinear
dynamical system model with multiple outputs y(t) and multiple
inputsu(t) (when they exist). Generally this identification problem
can be tackled using different model structures, with the class of
linear models being arguably the most well studied in engineer-
ing, statistics and econometrics (Barber, 2012; Bishop, 2006; Box,
Jenkins, Reinsel, & Ljung, 2015; Ljung, 1998; Söderström & Stoica,
1988).

Linear models are often used even when the system is known
to be nonlinear (Enqvist, 2005; Schoukens, Vaes, & Pintelon, 2016).
However certain nonlinearities, such as saturations, cannot always
be neglected. In such cases using block-oriented models is a pop-
ular approach to capture static nonlinearities (Giri & Bai, 2010).
Recently, such models have been given semiparametric formula-
tions and identified using machine learning methods, cf. Pillonetto
(2013) and Pillonetto, Dinuzzo, Chen, DeNicolao, and Ljung (2014).
To model nonlinear dynamics a common approach is to use Nar-
maxmodels (Billings, 2013; Sjöberg et al., 1995).

In this paper we are interested in recursive identification
methods (Ljung & Söderström, 1983). In cases where the model
structure is linear in the parameters, recursive least-squares can
be applied. For certain models with nonlinear parameters, the
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extended recursive least-squares has been used (Chen, 2004). An-
other popular approach is the recursive prediction error method
which has been developed, e.g., for Wiener models, Hammerstein
models, and polynomial state-space models (Mattsson & Wigren,
2016; Tayamon, Wigren, & Schoukens, 2012; Wigren, 1993).

Nonparametric models are often based on weighted sums of
the observed data (Roll, Nazin, & Ljung, 2005). The weights vary
for each predicted output and the number of weights increases
with each observed datapoint. The weights are typically obtained
in a batch manner; in Bai and Liu (2007) and Bijl, van Wingerden,
Schön, and Verhaegen (2015) they are computed recursively but
must be recomputed for each new prediction of the output.

For many nonlinear systems, however, linear models work well
as an initial approximation. The strategy in Paduart et al. (2010)
exploits this fact by first finding the best linear approximation
using a frequency domain approach. Then, starting from this ap-
proximation, a nonlinear polynomial state-space model is fitted
by solving a nonconvex problem. This two-step method cannot be
readily implemented recursively and it requires input signals with
appropriate frequency domain properties.

In this paper, we start from a nominal model structure. This
class can be based on insights about the system, e.g. that linear
model structures can approximate a system around an operating
point. Given a record of past outputs, y(t) and inputs u(t), that is,

Dt ≜
{

(y(1),u(1)) , . . . , (y(t),u(t))
}
,

a nominal model yields a predicted output y0(t + 1) which differs
from the output y(t + 1). The resulting prediction error is denoted
ε(t + 1) (Ljung, 1999). By characterizing the nominal prediction
errors in a data-drivenmanner,we aim to develop a refined predic-
tor model of the system. Thus we integrate classic and data-driven
system modeling approaches in a natural way.
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The general model class and problem formulation are intro-
duced in Section 2. Then in Section 3 we apply the principle of
maximum likelihood to derive a statistically motivated learning
criterion. In Section 4 this nonconvex criterion is minimized using
a majorization–minimization approach that gives rise to a convex
user-parameter free method. We derive a computationally effi-
cient recursive algorithm for solving the convex problem, which
can be applied to large data sets as well as online learning sce-
narios. In Section 5, we evaluate the proposed method using both
synthetic and real data examples.

In a nutshell, the contribution of the paper is a modeling ap-
proach and identification method for nonlinear multiple input–
multiple output systems that:

• explicitly separates modeling based on application-specific
insights from general data-driven modeling,

• circumvents the choice of regularization parameters and
initialization points,

• learns parsimonious predictor models,
• admits a computationally efficient implementation.

Notation: Ei,j denotes the ijth standard basis matrix. ⊗ and ⊙ de-
note the Kronecker and Hadamard products, respectively. vec(·) is
the vectorization operation. ∥x∥2, ∥x∥1 and ∥X∥W =

√
tr{X⊤WX},

where W ≻ 0, denote ℓ2-, ℓ1- and weighted norms, respectively.
The Moore–Penrose pseudoinverse of X is denoted X†.

Remark 1. An implementation of the proposedmethod is available
at https://github.com/magni84/lava.

2. Problem formulation

Given Dt−1, the ny-dimensional output of a system can always
be written as

y(t) = y0(t) + ε(t), (1)

where y0(t) is any one-step-ahead predictor based on a nominal
model. Here we consider nominal models on the form

y0(t) = Θϕ(t), (2)

where the p × 1 vector ϕ(t) is a given function of Dt−1 and Θ

denotes the unknown parameters.

Remark 2. A typical example of ϕ(t) is

ϕ(t) = [y⊤(t − 1) · · · y⊤(t − na) u⊤(t − 1) · · ·

u⊤(t − nb) 1]⊤, (3)

in which case the nominal predictor is linear in the data and
therefore captures the linear system dynamics. Nonlinearities can
be incorporated if such are known about the system, in which case
ϕ(t) will be nonlinear in the data.

The popular Arx model structure, for instance, can be cast into
the framework (1) and (2) by assuming that the nominal prediction
error ε(t) is a white noise process (Ljung, 1998; Söderström &
Stoica, 1988). For certain systems, (2) may accurately describe the
dynamics of the system around its operation point and conse-
quently the white noise assumption on ε(t) may be a reasonable
approximation. However, this ceases to be the case even for sys-
tems with weak nonlinearities, cf. Enqvist (2005).

Next, we develop a data-driven model of the prediction errors
ε(t) in (1), conditioned on the past data Dt−1. Specifically, we
assume the conditional model

ε(t) | Dt−1 ∼ N (Zγ(t),Σ), (4)

where Z is an ny × q matrix of unknown latent variables, Σ is an
unknown covariance matrix, and the q× 1 vector γ(t) is any given
function of Dt−1. This is a fairly general model structure that can
capture correlated data-dependent nominal prediction errors.

Note that when Z ≡ 0, the prediction errors are temporally
white and the nominal model (2) captures all relevant system dy-
namics. The latent variable is modeled as random here. Before data
collection, we assume Z to have mean 0 as we have no reason to
depart from the nominal model assumptions until after observing
data. Using a Gaussian distribution, we thus get

vec(Z) ∼ N (0,D), (5)

where D is an unknown covariance matrix.
Our goal here is to identify a refined predictor of the form

ŷ(t) = Θ̂ϕ(t)  
ŷ0(t)

+ Ẑγ(t)  
ε̂(t)

, (6)

from a data set Dt−1, by maximizing the likelihood function. The
first term is an estimate of the nominal predictor model while the
second term tries to capture structure in the data that is not taken
into account by the nominal model. Note that when Ẑ is sparse we
obtain a parsimonious predictor model.

Remark 3. Themodel (1)–(4) implies that we canwrite the output
in the equivalent form

y(t) = Θϕ(t) + Zγ(t) + v(t),

where v(t) is a white process with covariance Σ. In order to for-
mulate a flexible data-driven error model (4), we overparametrize
it using a high-dimensional γ(t). In this case, regularization of Z
is desirable, which is achieved by (5). Note that D and Σ are both
unknown. Estimating these covariance matrices corresponds to
using a data-adaptive regularization, as we show in subsequent
sections.

Remark 4. The nonlinear function γ(t) of Dt−1 can be seen as a
basis expansion which is chosen to yield a flexible model structure
of the errors. In the examples belowwewill use the Laplace opera-
tor basis functions (Solin & Särkkä, 2014). Other possible choices
include the polynomial basis functions, Fourier basis functions,
wavelets, etc. Ljung (1998), Sjöberg et al. (1995) and Van den Hof
and Ninness (2005).

Remark 5. In (6), ŷ(t) is a one-step-ahead predictor. However,
the framework can be readily applied to k-step-ahead prediction
where ϕ(t) and γ(t) depend on y(1), . . . , y(t − k).

3. Latent variable framework

Given a record of N data samples, DN , our goal is to estimate
Θ and Z to form the refined predictor (6). In Section 3.1, we
employ themaximum likelihood approach based on the likelihood
function p(Y|Θ,D,Σ), which requires the estimation of nuisance
parameters D and Σ. For notational simplicity, we write the pa-
rameters as Ω = {Θ,D,Σ} and in Section 3.2 we show how an
estimator of Z is obtained as a function of Ω and DN .

3.1. Parameter estimation

We write the output samples in matrix form as

Y =
[
y(1) · · · y(N)

]
∈ Rny×N .
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