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a b s t r a c t

In this paper, a new barrier function-based adaptive strategy is proposed for first order sliding mode
controller. This strategy is applied to a class of first order disturbed systemswhose disturbance is bounded
with unknownboundary. The proposed barrier strategy can ensure the convergence of the output variable
andmaintain it in a predefined neighborhood of zero independent of the upper bound of the disturbance,
without overestimating the control gain.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

For systems with matching disturbances, the sliding mode con-
trol has proven its high efficiency (Utkin, 1992). Indeed, it provides
a closed-loop insensitivity to these disturbances and guarantees
the finite-time convergence. However, the implementation of the
first order sliding mode controllers (FOSMCs) requires the knowl-
edge of the upper bound of disturbances. In practice, this bound is
not constant and, moreover, frequently it is unknown. This means
that the gains of the FOSMCs are overestimated. This is a main
obstacle in the FOSMCs implementation growing the undesired
chattering effect (Boiko, 2008).

Recently, two different strategies to create adaptive sliding
mode (SM) controllers have been considered in the case where the
upper bound of the disturbance exists but it is unknown.

The first strategy of adaptation consists in increasing the gain
until the moment when the SM is reached, and then the gain is
fixed at this value, ensuring an ideal SM for some interval of time.
When the disturbance grows, the SM can be lost, therefore the
gain increases to reach it again (Incremona, Cucuzzella, & Ferrara,
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2016; Negrete-Chvez & Moreno, 2016). However, the FOSMC gain
in this strategy is overestimated and one cannot be sure that the
SM will not be lost in the future. To overcome this problem, an
approach based on increasing and decreasing the gain has been
developed (Bartolini, Levant, Plestan, Taleb, & Punta, 2012; Incre-
mona et al., 2016; Plestan, Shtessel, Bregeault, & Poznyak, 2010;
Shtessel, Taleb, & Plestan, 2012). This approach ensures the finite-
time convergence of the sliding variable to some neighborhood of
zero without big overestimation of the gain. Themain drawback of
this approach is that the size of the abovementionedneighborhood
and the time of convergence depend on the unknown upper bound
of disturbance, i.e. they are unknown a priori and one can never be
sure that SM will never be lost for bigger values of time.

The second strategy of adaptation is based on the usage of
the equivalent control value as an estimation of the disturbance
(Bartolini, Ferrara, Pisano, & Usai, 1998; Edwards & Shtessel, 2016;
Oliveira, Cunha, & Hsu, 2016; Utkin & Poznyak, 2013). In Oliveira
et al. (2016) a model based approach is presented. To realize
this strategy a low-pass filtered approximation of the equivalent
control were proposed. However, during the realization, the filter
constant should be chosenmuch less than the inverse of the upper
bound of the first derivative of disturbance.

The aim of this paper is to propose an adaptive strategy that
can achieve the convergence of the output variable to a predefined
neighborhood of zero,with a control gain that is not overestimated,
and without using any information about the upper bound of the
disturbance, nor the use of the low pass filter.

This paper proposes the use of Barrier Functions (BFs) as an
adaptive strategy for FOSMC in order to reach above mentioned
goal. In this current paper, two different classes of BFs are used:
the positive semi-definite BF and a positive definite BF.
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The main advantages of the proposed barrier adaptive SM con-
trol are:

• The output variable converges in a finite time to a predefined
neighborhood of zero, independently of the bound of the
disturbance, and cannot exceed it.

• The gain provided by the proposed strategy is not overesti-
mated, as it can only achieve the convergence of the output
variable to a predefined neighborhood of zero.

• The proposed strategy theoretically does not require neither
the bounds of the disturbance nor the use of the low-pass filter.

This paper is organized as follows. In Section 2 the problem for-
mulation is given. Section 3 presents the barrier adaptive FOSMC
algorithm. Finally, some conclusions are drawn in Section 4.

2. Problem formulation

Consider the first order system

ṡ(t) = u(t) + δ(t), (1)

where s(t) ∈ R is the output variable, u(t) is the FOSMC and δ(t) is
a disturbance. Here δ(t) is bounded functionwith unknown bound,
i.e. |δ(t)| ≤ δmax. The bound δmax > 0 exists but is not known.

In this context, the gain of the FOSMC is to be adapted in ac-
cordance with the adaptive strategy defined later. The idea behind
the proposed adaptive strategy is to first increase the adaptive gain
until the output variable reaches a small neighborhood of zero ε

2 at
time t̄ by using a constant derivative gain as in Plestan et al. (2010).
Secondly, for t > t̄ , the adaptive gain switches to a BF that can
maintain the output variable in the predefined neighborhood of
zero |s(t)| < ε.

2.1. Preliminaries

2.1.1. Barrier functions (BFs)

Definition 1. Let us suppose that some ε > 0 is given and fixed,
the BF can be defined as an even continuous function Kb : x ∈

]−ε, ε[ → Kb(x) ∈ [b, ∞[ strictly increasing on [0, ε[ .

• lim|x|→εKb(x) = +∞.
• Kb(x) has a unique minimum at zero and Kb(0) = b ≥ 0.

In this paper, the following two different classes of BFs are
considered;

• Positive definite BFs (PBFs): Kpb(x) =
εF̄

ε−|x| , i.e. Kpb(0) = F̄ >

0.
• Positive Semi-definite BFs (PSBFs): Kpsb(x) =

|x|
ε−|x| , i.e.

Kpsb(0) = 0.

The PBF Kpb(x) and the PSBF Kpsb(x) are illustrated in Fig. 1.

3. Barrier adaptive FOSMC algorithm

The following theorem is true for both possible FOSMC gains
design: using KB(s(t)) = Kpb(s(t)) and KB(s(t)) = Kpsb(s(t)).

Theorem 2. Consider system (1)with bounded disturbance δ(t)with
the controller

u(t) = −K (t, s(t))sign(s(t)), (2)

and with the adaptive control gain K (t, s)

K (t, s(t)) =

{
Ka(t), K̇a(t) = K̄ |s(t)|, if 0 < t ≤ t̄
KB(s(t)), if t > t̄ (3)

where K̄ to be arbitrary positive constant.

(a) Kpb(x). (b) Kpsb(x).

Fig. 1. Schematic illustrations of Kpb(x) and Kpsb(x).

Then for any s(0) and ε > 0, there exists t̄ the smallest root of
equation |s(t)| ≤

ε
2 such that for all t ≥ t̄ , the inequality |s(t)| < ε

holds.

The proof of Theorem 2 is given in the Appendix.

Remark 3. Note that this strategy allows the adaptive gain to
increase and decrease based on the current value of the output
variable. When the output variable is going to zero, the adaptive
gain decreases till the value which allows to compensate the dis-
turbance.

On the other hand, when the disturbance grows and the control
gain is less than the absolute value of disturbance, the output
variable grows and the control gain can grow if it is necessary till
the level ensuring that the system solution will never leave the ε
vicinity of zero.

Remark 4. Theoretically, the a priori knowledge of actuator capac-
ity P is not required, but it should be supposed that the actuator
is capable to compensate the disturbance. However, in practice, an
actuator is used and its capacity P is known. In this case for discrete
implementation of the proposed algorithm, the sampling step τ
should be chosen as τ ≪ ε/P . Otherwise, the attractive feature of
the BFwill be lost, and the output variablewill leave the predefined
neighborhood of zero.

The behavior of each barrier function PBF and PSBF, and the
achievement of real or ideal SM in finite time, together with the
continuity or discontinuity of the control signal are discussed in
Sections 3.1 and 3.2.

3.1. Adaptation with PBF

Consider the adaptation with PBF. In this case, Kpb(s(t)) has a
lower bound F̄ when s(t) = 0. Therefore, when |δ(t)| < F̄ the
adaptive gain is overestimated. In this case, this strategy provides
an ideal SM. In order to attenuate this overestimation, F̄ can be
chosen small enough. The usage of PBF when the bound of the
disturbance is less than F̄ will provide a discontinuous control
signal leading to the chattering whose amplitude is proportional
to the choice of F̄ .

3.2. Adaptation with PSBF

Consider now the adaptation with PSBF. In this case, Kpsb(s(t))
tends to zero when s(t) → 0. Hence, Kpsb(s(t)) has the same
behavior as |s(t)|

ε
in the neighborhood of zero, i.e. |s(t)|

ε
≪ 1 →

Kpsb(s(t)) =
|s(t)|

ε−|s(t)| ≈
|s(t)|

ε
.

This means that if δ(t) and s(t) tend monotonically to zero,
consequently the adaptive gain Kpsb(s(t)) will go to zero. The dis-
continuity of the control signal can appear only once at time t̄ ,
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