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a b s t r a c t

The leader-following attitude consensus problem of multiple rigid body systems has been studied by the
distributed observer approach. The key assumption in the existing results is that the communication net-
work among the rigid body systems is static and connected. Nevertheless, this assumption is undesirable
since, typically, the communication network is time-varying and disconnected from time to time due
to changes of the environment or failures of some subsystems. In this paper, we will further study the
leader-following attitude consensus problemofmultiple rigid body systems subject to a jointly connected
switching communication network. This new problem is more challenging than the existing one since
a jointly connected switching communication network can be disconnected at every time instant. To
overcome the difficulty, we first show that the distributed observer for a nonlinear target system subject
to a jointly connected switching communication network exists. Then, we further synthesize a distributed
control law utilizing this distributed observer for the multiple rigid body systems. Finally, we show
that this distributed control law solves our problem through the argument of the certainty equivalence
principle.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The attitude control of rigid body systems has received con-
stant attention not only because many space missions and robot
applications demand precise attitude control, but also because the
problemposes some specific challenges to control theory and tech-
nology. The problemhas been studiedunder various scenarioswith
a variety of techniques in, say, Chen & Huang (2009, 2015), Luo,
Chu, & Ling (2005), Sidi (1997), Tayebi (2008), and Yuan (1988).
Recently, as more andmore spacemissions are performed through
coordinated operations ofmultiple spacecraft systems, the attitude
consensus problem of multiple rigid body systems is getting more
and more attentions from the control community.

There are two types of attitude consensus problems formultiple
rigid body systems: the leaderless attitude consensus problem and
the leader-following attitude consensus problem. The leaderless
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attitude consensus problem is also called the attitude synchroniza-
tion problem. It aims to synchronize the attitudes of all rigid body
systems to a common trajectory, which is determined by the initial
states of all systems (Abdessameud & Tayebi, 2009; Lawton &
Beard, 2002). On the other hand, the leader-following attitude con-
sensus problem aims to drive the attitudes of all rigid body systems
to a desirable trajectory generated by a target system (Bai, Arcak, &
Wen, 2008; Cai & Huang, 2014, 2016; Ren, 2007). In particular, Cai
& Huang (2014, 2016) studied the leader-following attitude con-
sensus problem of multiple rigid body systems by employing a so-
called distributed observer, which is a dynamic compensator that
can provide for each rigid body system the estimates of the angular
velocity and the attitude of the target system. The results in Cai
and Huang (2014, 2016) were obtained under the condition that
the communication network of the multiple rigid body systems is
static and connected, which is the least restrictive condition in the
existing literature. Nevertheless, in some real applications, the as-
sumption that the communication network is static and connected
may be undesirable since, typically, the communication network is
time-varying and disconnected from time to time due to changes
of the environment, link failures, or network reconfigurations.

In this paper, wewill further study themore practical andmore
desirable scenario where the communication network is a jointly
connected switching network (Jadbabaie, Lin, & Morse, 2003). The
jointly connected assumption is the mildest assumption among
all existing assumptions on the communication network because,
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Nomenclature

Rn n-dimensional Euclidean space
1N An N dimensional column vector whose compo-

nents are all 1
⊗ Kronecker product
∥ · ∥ Euclidean norm of a vector or induced Euclidean

norm of a matrix
col(·) For Xi ∈ Rni×p, i = 1, . . . ,m

col(X1, . . . , Xm) =
[
XT
1 · · · XT

m

]T
q(·) For x ∈ R3, q(x) = col (x, 0) ∈ R4

Q Set of all quaternions
Q = {q | q = col(q̂, q̄), q̂ ∈ R3, q̄ ∈ R}

Qu Set of all unit quaternions
Qu = {q | q ∈ Q, ∥q∥ = 1}

qI Quaternion identity, qI = col(0, 0, 0, 1) ∈ Qu
(·)∗ Quaternion conjugate, for q ∈ Q, q∗

= col(−q̂, q̄)
(·)−1 Quaternion inverse, for q ∈ Qu, q−1

= q∗

⊙ Quaternion product, for qi, qj ∈ Q

qi ⊙ qj =

[
q̄iq̂j + q̄jq̂i + q̂×

i q̂j
q̄iq̄j − q̂Ti q̂j

]
C(·) For q ∈ Q, C(q) = (q̄2 − q̂T q̂)I3 + 2q̂q̂T − 2q̄q̂×

If q ∈ Qu, C(q) is the direction cosine matrix
(·)× For x = col(x1, x2, x3) ∈ R3

x×
=

[
0 −x3 x2
x3 0 −x1

−x2 x1 0

]
∈ R3×3

I Inertial frame
B0 Body frame of the target system
Bi Body frame of the ith rigid body
q0 The attitude of B0 relative to I
qi The attitude of Bi relative to I
ω0 The angular velocity of B0 relative to I
ωi The angular velocity of Bi relative to I
Ji Inertia matrix of the ith rigid body
ui Control torque of the ith rigid body
S System matrix of the angular velocity target sys-

tem
E Output matrix of the angular velocity target sys-

tem
v State of the angular velocity target system
ϵi Relative attitude between Bi and B0

ϵi = q−1
0 ⊙ qi

ϵ̂i The vector part of ϵi, ϵi = col(ϵ̂i, ϵ̄i)
ω̌i Angular velocity of Bi relative to B0

ω̌i = ωi − C(ϵi)ω0
ξi Estimate of v
ζi Estimate of ω0
ηi Estimate of q0
ei Estimate of ϵi, ei = η∗

i ⊙ qi
êi The vector part of ei, ei = col(êi, ēi)
ω̃i Estimate of ω̌i, ω̃i = ωi − C(ei)ζi

under this assumption, the network can be disconnected at every
time instant, and it includes the static and connected network
as a special case. Nevertheless, the jointly connected switching
network together with the nonlinearity of the target system poses
two specific challenges that cannot be handled by the approach
in Cai and Huang (2014, 2016). First, the establishment of the
distributed observer in Cai and Huang (2014, 2016) explicitly
relies on a Lyapunov function candidate for the distributed ob-
server which exists only if the network is static and connected.
Here, we will connect the stability of our distributed observer to

a newly established stability result for a perturbed linear switched
system given recently in Liu and Huang (2017). Second, in order
to overcome the nonlinearity of the target system, we will make
use of a pseudo linear representation of the attitude kinematics
of the target system. This new representation allows us to apply
the result in Liu and Huang (2017) to our case. In particular, for
the special case studied in Cai and Huang (2014, 2016), where the
network is static and connected, our new approach will simplify
the convergence analysis of the distributed observer in Cai and
Huang (2014, 2016).

It is noted that the leaderless consensus problem of rotation
groups in SO(3) and SO(n) were studied in Matni and Horowitz
(2014) and Tron, Afsari, and Vidal (2012), respectively. Instead
of proposing distributed control laws to control the dynamics of
each system, distributed algorithms for reaching consensus were
proposed in Matni and Horowitz (2014) and Tron et al. (2012) by
solving optimization problems.

The remainder of the paper is organized as follows. In Section 2,
we give a formulation of our problem and list two assumptions
for the solvability of the problem. In Section 3, we focus on estab-
lishing the existence of the distributed observer subject to jointly
connected switching networks. In Section 4, we further synthesize
a distributed control law utilizing this distributed observer, and
show that this distributed control law solves our problem through
the argument of the certainty equivalence principle. In Section 5,
an example is presented to illustrate the effectiveness of our ap-
proach. Finally, we conclude this paper in Section 6 with some
remarks.

2. Problem formulation and preliminaries

In this paper,we use unit quaternion to represent the attitude of
a rigid bodywith respect to the inertial frame. As in Cai and Huang
(2014), we consider a group of N rigid bodies, whose attitude
kinematics and dynamics are governed by the following equations:

q̇i =
1
2
qi ⊙ q(ωi) (1a)

Jiω̇i = −ω×

i Jiωi + ui, i = 1, . . . ,N (1b)

where qi ∈ Qu is the unit quaternion representation of the attitude
of the frame Bi relative to the inertial frame I; ωi ∈ R3 is the
angular velocity of the frame Bi relative to the inertial frame I;
Ji ∈ R3×3 is the positive definite inertia matrix and ui ∈ R3 is the
control torque of the ith rigid body. Note that ωi, Ji, and ui are all
expressed in Bi.

Like in Cai and Huang (2016), we assume that the desired
angular velocity ω0 ∈ R3 and attitude q0 ∈ Qu of the target
system’s fixed body frame B0 relative to the inertial frame I are
governed by the following equations:

v̇ = Sv, ω0 = Ev (2a)

q̇0 =
1
2
q0 ⊙ q(ω0) (2b)

where v ∈ Rm, and S ∈ Rm×m, E ∈ R3×m are constant matrices.
Also, as in Cai and Huang (2014), we view the system composed

of (1) and (2) as a multi-agent system of (N + 1) agents with (2)
as the leader and the N subsystems of (1) as followers. However,
here the communication network of the multi-agent system is
described by a switching digraph1 Ḡσ (t) =

(
V̄, Ēσ (t)

)
with σ (t)

being a piecewise constant switching signal, V̄ = {0, 1, . . . ,N},

and Ēσ (t) ⊆ V̄ × V̄ for all t ≥ 0. Node 0 is associated with the
leader system (2) and node i, i = 1, . . . ,N , is associated with

1 See Appendix A for a summary of notation on digraph.
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