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a b s t r a c t

This paper considers the stability problem of a class of positive coupled differential-difference equations
with unbounded time-varying delays. A new method, which is based on upper bounding of the state
vector by a decreasing function, is presented to analyze the stability of the system. Different from the
existing methods, our method does not use the usual Lyapunov–Krasovskii functional method or the
comparison method based on positive systems with constant delays. A new criterion is derived which
ensures asymptotic stability of the system with unbounded time-varying delays. A numerical example
with simulation results is given to illustrate the stability criterion.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Many systems in engineering are described by a differen-
tial equation coupled with a difference equation (see Gu, 2010;
Mazenc, Ito, & Pepe, 2013; Pepe, Jiang, & Fridman, 2008 and the
references therein). Such equations are called coupled differential-
difference equations (CDDEs). They cover many important classes
of dynamical systems, such as neutral systems, systems with mul-
tiple commensurate delays, some singular systems as special cases
(Gu & Liu, 2009; Gu & Niculescu, 2006). Many partial differential
equations with nonstandard derivative boundary conditions, for
example, lossless propagation systems described by a partial dif-
ferential equation of hyperbolic type, can also be reformulated into
CDDEs with finite delay (Niculescu, 2001; Răsvan, 2006). The most
widely used approach to analyze stability of CDDEs is based on
the discretized Lyapunov–Krasovskii functional method combined
with linear matrix inequalities (LMIs) (see Gu, 2010; Gu & Liu,
2009; Gu, Zhang, & Xu, 2011; Karafyllis, Pepe, & Jiang, 2009; Li &
Gu, 2010; Mazenc et al., 2013; Pepe et al., 2008; Zhang, Peet, & Gu,
2011 and the references therein).

Positive systems,whose states are never negativewhenever the
initial conditions are non-negative, appear naturally inmany fields
such as biology, industrial engineering and economics (see Kac-
zorek, 2002). The stability problem of positive systems with time
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delays has also attracted significant research attention in recent
years (see Ait Rami, 2009; Liu & Dang, 2011; Liu, Yu, &Wang, 2010;
Nam, Phat, Pathirana, & Trinh, 2016;Nam, Trinh, & Pathirana, 2016;
Ngoc, 2013; Ngoc & Trinh, 2016; Phat & Sau, 2014; Shen & Lam,
2014; Zhu, Li, & Zhang, 2012). Recently, an overview on the recent
developments of stability of linear positive time-delay systems has
been given in Briat (2017). Shen and Zheng (2015) considered the
stability problem of a class of positive CDDEs with bounded time-
varying delay. Their method is based on a comparison between the
solution of CDDEs with a time-varying delay and the solution of
CDDEs with a constant delay, which is an upper bound of the time-
varying delay. Hence, it is not possible to extend this method to
CDDEs with infinity time-varying delays.

Normally, time delays which appear in engineering systems,
are bounded (see Fridman, 2014; Gu, Chen, & Kharitonov, 2003;
Shafai & Sadaka, 2012; Shafai, Sadaka, & Ghadami, 2012; Sipahi,
Vyhlidal, & Niculescu, 2012). However, it also appears that there
are many dynamical systems whose time delays are unbounded.
In dynamical systems that have a spacial nature, such as neural
networks, time delay is often unbounded. Therefore, in recent
years there has been a growing interest in the stability problem of
dynamical systems with unbounded time-delay (see Chen & Liu,
2017; Feyzmahdavian, Charalambous, & Johansson, 2014; Li & Cao,
2017; Liu & Dang, 2011; Liu, Lu, & Chen, 2010; Shen & Lam, 2015;
Zhou, 2013, 2014).

So far, most of the existing results reported only on the stability
of CDDEs with constant time delays or bounded time-varying
delays. No papers have reported on the stability of CDDEs with
unbounded time-varying delays. In this paper, inspired by the
work of Liu and Dang (2011), we study the stability problem of
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a class of positive CDDEs with unbounded time-varying delays.
Instead of using the comparison method (Shen & Zheng, 2015),
we construct estimates of the solution of the considered CDDEs
on non-equal time sub-intervals. As a result, we can analyze the
stability of CDDEs with unbounded time-varying delays. A new
stability condition for the system is obtained. The obtained result
is illustrated by a numerical example.

2. Notations and a problem statement

Notations. Rn(Rn
0,+,R

n
+
) is the n-dimensional (nonnegative, pos-

itive) vector space; 1, n = {1, 2, . . . , n}; given two vectors x =

[x1 x2 · · · xn]T ∈ Rn, y = [y1 y2 · · · yn]T ∈ Rn, two n × nmatrices
A = [aij] and B = [bij], the following notations will be used in
our development: x ≺ y(⪯ y) means that xi < yi(≤ yi),∀i ∈ 1, n;
A ≺ B(⪯ B)means that aij < bij(≤ bij),∀i, j ∈ 1, n;A is nonnegative
if 0 ⪯ A; A is a Metzler matrix if aij ≥ 0,∀i, j ∈ 1, n, i ̸= j;
∥x∥∞ = maxni=1|xi|; s(A) = max{Re(λ) : λ ∈ σ (A)} stands for
the spectral abscissa of a matrix A; ρ(A) = max{|λ| : λ ∈ σ (A)}
stands for the spectral radius of a matrix A. A is a Schur matrix if
ρ(A) < 1; The limitation of a vector-valued function is understood
in the component-wise sense.

Consider the following linear CDDEs with time-varying delays

ẋ(t) = Ax(t) + By(t − τ (t)), t ≥ 0, (1)

y(t) = Cx(t) + Dy(t − h(t)), (2)

where x(.) ∈ Rn, y(.) ∈ Rm are the state vectors. A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m are known constant matrices.
D is assumed to be a Schur matrix. Here, the delays τ (.) ∈ R0,+ and
h(.) ∈ R0,+ are unknown time-varying delays. Similar to Liu and
Dang (2011), the delays can be unbounded and assumed to satisfy
the following growth condition:

Assumption 1. There exist a positive scalar T > 0 and a scalar
θ ∈ (0, 1) such that

max
{
sup
t≥T

τ (t)
t
, sup

t≥T

h(t)
t

}
≤ θ. (3)

It is easy to see that all the bounded delays satisfy condition (3).
Furthermore, condition (3) implies that t − τ (t) ≥ (1 − θ )t > 0
and t − h(t) ≥ (1 − θ )t > 0 for all t ≥ T . Hence, the initial
condition of system (1)–(2) is given by x(0) = ψ(0), y(s) =

φ(s), s ∈ [−maxt∈[0,T ] max h(t), τ (t), 0). Let us denote by x(t, ψ,
φ) and y(t, ψ, φ) the state trajectories with the initial condition
(ψ, φ) of system (1)–(2).

The main objective of this paper is to derive a sufficient condi-
tion for the asymptotic stability of system (1)–(2).

3. Main result

The following lemmas are needed for our development.

Lemma 1 (Berman & Plemmons, 1994). (i) Let M ∈ Rn×n
+ be a

nonnegative matrix. Then, the following statements are equivalent:
(i1) M is Schur stable; (i2) (M − I)q ≺ 0 for some q ∈ Rn

+
; (i3)

(I − M)−1
⪰ 0.

(ii) Let M ∈ Rn×n be a Metzler matrix. Then, the following
statements are equivalent: (ii1) M is Hurwitz stable; (ii2) Mq ≺ 0
for some q ∈ Rn

+
; (ii3) M−1

⪯ 0.

Definition 2 (Kaczorek, 2002). System (1)–(2) is said to be pos-
itive if for any non-negative initial values, ψ(0) ⪰ 0, φ(s) ⪰

0, s ∈ [−T , 0), the state trajectories of system (1)–(2) satisfy that
x(t, ψ, φ) ⪰ 0,∀t ≥ 0 and y(t, ψ, φ) ⪰ 0,∀t ≥ 0.

Lemma 3 (Ngoc & Trinh, 2016; Shen & Zheng, 2015). Assume that A
is a Metzler matrix, B, C , D are nonnegative, D is a Schur matrix. Then,

(i) For all piecewise continuous functions ω(t) ⪰ 0, u(t) ⪰ 0, the
following system is positive

ẋ(t) = Ax(t) + By(t − τ (t)) + ω(t), (4)

y(t) = Cx(t) + Dy(t − h(t)) + u(t). (5)

(ii) For ψ1(0) ⪯ ψ2(0) and φ1(s) ⪯ φ2(s), s ∈ [−T , 0), we have

x(t, ψ1, φ1) ⪯ x(t, ψ2, φ2), ∀t ≥ 0, (6)

y(t, ψ1, φ1) ⪯ y(t, ψ2, φ2), ∀t ≥ 0. (7)

(iii) Assume that s(A + B(I − D)−1C) < 0. Then, there exist p ∈ Rn
+
,

q ∈ Rm
+
and µ ∈ (0, 1) such that

Ap + Bq ≺ 0, (8)

Cp + Dq ≺ (1 − µ)q, (9)

(I − D)−1Cp ≺ (1 − µ)q. (10)

Proof. The proof of (i) is similar to Shen and Zheng (2015). There-
fore, we omit it here. We now use (i) to prove (ii). Since system
(1)–(2) is linear, we have

x(t, ψ2, φ2) − x(t, ψ1, φ1) = x(t, ψ2 − ψ1, φ2 − φ1). (11)

By the positivity of system (1)–(2), we have

x(t, ψ2 − ψ1, φ2 − φ1) ⪰ 0,∀t ≥ 0. (12)

From (11) and (12), we obtain (6). Similarly, we also obtain (7).
(iii) By Ngoc and Trinh (2016), there exist two vectors p ∈ Rn

+

and q ∈ Rm
+
such that

Ap + Bq ≺ 0, (13)

Cp + (D − I)q ≺ 0. (14)

Since D is Schur stable and nonnegative, (I − D)−1 is nonnegative
by Lemma 1. Left multiplying (I − D)−1 on (14), we obtain

(I − D)−1Cp − q ≺ 0. (15)

Since (14) and (15) are strict inequalities, there is a scalarµ ∈ (0, 1)
such that inequalities (9) and (10) hold. The proof of Lemma 3 is
completed. □

We are now in a position to introduce the main result in the
form of the following theorem.

Theorem 4. Assume that A is a Metzler matrix, B, C, D are non-
negative, D is a Schur matrix and s(A + B(I − D)−1C) < 0. Then,
for all time-varying delays satisfying condition (3), system (1)–(2) is
asymptotically stable.

Proof. Step 1: In this step, we prove that there exist a scalar µ∗
∈

(0, µ) and a time t1 > 0 such that

x(t, p, q) ⪯ (1 − µ∗)p, ∀t ≥ t1, (16)

y(t, p, q) ⪯ (1 − µ∗)q, ∀t ≥ t1, (17)

where p, q µ are defined in Lemma 3. Firstly, similar to Shen and
Zheng (2015), we define ex(t) = p−x(t, p, q), ey(t) = q−y(t, p, q).
Then, ex(t) and ey(t) satisfy the following system:

ėx(t) = Aex(t) + Bey(t − τ (t)) − (Ap + Bq), (18)

ey(t) = Cex(t) + Dey(t − h(t)) − (Cp + (D − I)q). (19)
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