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a b s t r a c t

This paper investigates the optimal consensus problem for general linear MASs (of semi-stable and un-
stable dynamics) subject to control input constraints. The optimal consensus protocols are first designed
by inverse optimality approach, based on which the centralized receding horizon control (RHC)-based
consensus strategies are designed and the feasibility and consensus properties of the closed-loop systems
are analyzed. Utilizing the centralized one, distributed RHC-based consensus strategies are developed.
We show that (1) the optimal performance indices under the inverse optimal consensus protocols are
coupled with the network topologies and the system matrices of subsystems; (2) the unstable modes of
subsystems impose more stringent requirements for the parameter design; (3) the designed RHC-based
consensus strategies canmake the control input constraints fulfilled and ensure convergent consensus and
consensus for MASs with semi-stable and unstable subsystems, respectively.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The consensus problem is one of the most important issues in
multi-agent systems (MASs). It finds many applications in multi-
robotic systems, sensor networks, and power grids, and is also
essential to solve some other problems such as formation control,
swarm, and distributed estimation problems. Many celebrated
results on consensus have been developed, for example, Olfati-
Saber and Murray (2004) and Ren and Beard (2005). Even though
much progress has been made in MASs, many practical issues in
consensus protocol design are still left to be explored.

The optimality is a practical requirement in many control sys-
tems, and it is also a desired property for consensus protocol
design in MASs. For instance, a wireless sensor network may be
expected to reach consensus in state estimates using smallest
energy as each sensor node has limited battery power. In addition,
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the optimal consensus protocol may provide some satisfactory
control performance as in LQR. This motivates the study of optimal
consensus problem in e.g., Borrelli and Keviczky (2008), Cao and
Ren (2010) and Hengster-Movric and Lewis (2014). Another fre-
quently encountered issue would be the control input constraints
in MASs. For example, in a multi-robot system, the control inputs
formotors in each robot are not allowed to be too large in order not
to ruin themotors, or themotorsmay not provide enough power to
generate very large control inputs. The typical results for consensus
with input constraints can be found in Nedic, Ozdaglar, and Parrilo
(2010) and Lin and Ren (2014).

It is well known that the receding horizon control (RHC) strat-
egy, also known as model predictive control is capable of handling
system constraints while preserving (sub-)optimal control perfor-
mance, and this motivates us to study the constrained consensus
problem in an RHC-based framework. In this paper, we consider
two classes of discrete-time linear MASs, i.e., MASs with semi-
stable and unstable subsystems (i.e., not semi-stable). For both
classes of MASs, we first investigate the inverse optimal consensus
problem and design optimal consensus protocols, and then study
the RHC-based consensus problems and investigate the feasibility
issue and analyze the achieved consensus property.

In the literature of RHC strategy for MASs, most of the results
are focused on cooperative stabilization problems by either as-
suming fully-connected networks or avoiding analyzing detailed
network affects (e.g., Franco, Magni, Parisini, Polycarpou, & Rai-
mondo, 2008; Li & Shi, 2014; Müller, Reble, & Allgöwer, 2012),
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with a few exceptions (Ferrari-Trecate, Galbusera, Marciandi, &
Scattolini, 2009; Li, Shi, & Yan, 2016; Li & Yan, 2015; Zhan &
Li, 2013; Zhang, Cheng, & Chen, 2015). In Ferrari-Trecate et al.
(2009), the RHC-based consensus strategies are proposed forMASs
with integrator and double-integrator dynamics. In Zhan and Li
(2013), the consensus problem for MASs with integrator is solved
by using unconstrained RHC, requiring multiple-time information
exchange. In Zhang et al. (2015), the RHC-based consensus problem
is studied for MASs with double-integrator and input constraints.
However, this method may not be directly applicable for MASs
with higher order dynamics. The RHC-based consensus problem is
investigated for MASs with general linear dynamics in Li and Yan
(2015), but the input constraints are not considered.

In this paper,wepropose a solution to the RHC-based consensus
problem for general linear MASs with input constraints. The main
contributions of this paper are as follows:

• The global optimal consensus protocols and the conditions
for designing such protocols are proposed for MASs with
semi-stable and unstable subsystems, based onwhich novel
centralized RHC-based consensus strategies that can fulfill
control input constraints are developed. The conditions for
decomposition of cost functions and constraints are pro-
vided, and the distributed RHC-based consensus strategies
are designed for MASs with constraints.

• The feasibility and consensus properties are analyzed for
both classes of MASs. We prove that, the designed RHC
algorithm is feasible and the closed-loop system can reach
consensus. In particular, for the MASs with semi-stable sub-
systems, the convergent consensus can be guaranteed.

Notation: The superscripts ‘‘T’’, ‘‘−1’’ and ‘‘#’’ are denoted by the
matrix transposition, inverse and group inverse, respectively. R
(R⩾0) and Z (Z+) represent the real numbers (nonnegative real
numbers) and integers (nonnegative integers), respectively. For a
matrix P , P > 0 (P ⩾ 0) means it is positive-definite (semi-
positive definite). For a vector x ∈ Rn, its Euclidean norm and
P-weighted norm are denoted by ∥x∥ and ∥x∥P ≜

√
xTPx, re-

spectively, where P ⩾ 0. The distance between x and a set O ⊆

Rn is denoted by |x|O = infy∈O∥x − y∥. Given a matrix P , we
use λ(P), spec(P), σmin(P) and σmax(P) to represent its eigenvalue,
spectrum radius, minimum and maximum nonzero spectrum, re-
spectively. For a matrix A, its range and null space are denoted by
range(A) and Null(A), respectively. We write the column operation
[xT1, x

T
2, . . . , x

T
n]

T as col(x1, x2, . . . , xn). Given two sets A ⊆ B ⊆ Rn,
the difference between them is defined by A \ B ≜ {x|x ∈ A, x ̸∈ B}.
⊗ denotes the Kronecker product operation.

2. Problem formulation

Consider an MAS with each agent i

xik+1 = Axik + Bui
k, i = 1, . . . ,M, (1)

where xik ∈ Rn is the state, ui
k ∈ Rm is the control input. The

control input needs to satisfy the constraint ui
k ∈ Ui, where Ui are

compact sets, and contain the origin as their interior points. Each
agent i can communicate with some neighboring agents via the
communication network, which is characterized by a graph G with
a triple {V, E,A}, where V = {1, . . . ,N} represents the collection
of N vertices (nodes), E ⊆ V × V is the set of arcs or edges, and
A = [aij] ∈ Rn×n with aij ⩾ 0 is the weighted adjacency matrix of
the graph G.

It is assumed that G contains no-self loop, and its Laplacian ma-
trix is denoted by L. In G, the neighboring set for agent i is denoted

by Ni. For more graph notations, definitions and properties, the
reader is referred to Ren and Beard (2005) and You and Xie (2011).

The overall augmented system can be written as

Xk+1 = (IM ⊗ A)Xk + (IM ⊗ B)Uk, (2)

where Xk = col(x1k, . . . , x
M
k ), and Uk = col(u1

k, . . . , u
M
k ). The system

constraint becomes Uk ∈ U , where U = U1
× · · · × UM .

Definition 1. For the MAS of dynamics in (1) over a graph G,
with certain control input ui

k to close the loop, it is said to reach
consensus, if limk→∞∥xik −xjk∥ = 0, ∀i, j = 1, . . . ,M . Furthermore,
if it reaches consensus, and limk→∞∥xik∥ approaches to a finite
constant, ∀i = 1, . . . ,M , then the MAS is said to reach convergent
consensus.

Two necessary conditions are assumed (Ma & Zhang, 2010; Ren
& Beard, 2005; You & Xie, 2011).

Assumption 1. The pair (A, B) is controllable and the graph G
contains a spanning tree.

The objective of this study is to design RHC-based consensus
strategies for the system in (1) with communication topology G
subject to the control constraint, and further investigate under
what conditions, the designed RHC strategies are distributed, fea-
sible and can achieve consensus and/or convergent consensus.

3. Set stability and inverse optimality

3.1. Preliminary results for set stability

Consider a discrete-time system

xk+1 = f (xk), k ∈ Z+, (3)

where xk ∈ Rn, and f : Rn
→ Rn, is continuous. The solution to

(3) is denoted by x(k, x0) with the initial state x0. LetO a nonempty
closed subset of Rn, and O is not necessarily compact. The set O is
said to be forward invariant for the system in (3), if for any x0 ∈ O,
it follows that x(k, x0) ∈ O, for any k ⩾ 0.

Motivated by the set stability definition in Jiang and Wang
(2002), we present the definition of asymptotic stability as follows.

Definition 2. For the system in (3), suppose that there is a forward
invariant set O. It is said to be asymptotically stable with respect
to the set O, if the following two conditions hold: (1) Lyapunov
stability: for every ϵ > 0, there exists some δ > 0 such that |x0|O <

δ ⇒ |x(k, x0)|O < ϵ, ∀k ⩾ 0. (2) Attraction: for x0 ∈ X ⊆ Rn,
limk→∞|x(k, x0)|O = 0.

Theorem 3 (Jiang &Wang, 2002). For the system in (3) with a given
forward invariant set O ∈ Rn, if there exists a continuous function
V : Rn

→ R⩾0, such that (1) α1(|x|O) ⩽ V (x) ⩽ α2(|x|O);
(2) V (f (x)) − V (x) ⩽ −α3(|x|O), for any x ∈ X ⊆ Rn, where α1
and α2 are K-function, and α3 is a positive function, then the system
in (3) is asymptotically stable with respect to the set O.

According to Definition 1, the MAS in (1) achieves consensus,
meaning that the state for each agent will eventually converge to
the consensus set C ≜ {x1 = x2 = · · · = xM}. By Definition 2, the
asymptotic stability with respect to the set C for the closed-loop
system in (2) ensures the state Xk will enter the set Cwhen k → ∞,
implying that theMAS in (1) reaches consensus. As a result, we can
show the state consensus by proving that the closed-loop system
is asymptotically stable with respect to a consensus set.



Download English Version:

https://daneshyari.com/en/article/7108892

Download Persian Version:

https://daneshyari.com/article/7108892

Daneshyari.com

https://daneshyari.com/en/article/7108892
https://daneshyari.com/article/7108892
https://daneshyari.com

