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a b s t r a c t

A number of recent works employ bilinear Hamiltonian interactions between Linear Quantum Stochastic
Systems (LQSSs). To the authors’ knowledge, implementation schemes for such interactions exist only
between single-mode systems. In this work, we propose a general method for the implementation of an
arbitrary bilinearHamiltonian interaction between twomulti-mode LQSSs via a feedback interconnection.
As an application, we show that the direct interaction realization of a certain coherent quantum control
architecture is very useful for design and optimization.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Linear Quantum Stochastic Systems (LQSSs) are a class of mod-
els used in quantum optics (Gardiner & Zoller, 2000; Walls &
Milburn, 2008; Wiseman & Milburn, 2010), circuit QED systems
(Kerckhoff et al., 2013; Matyas, Jirauschek, Peretti, Lugli, & Csaba,
2011), quantum opto-mechanical systems (Dong, Fiore, Kuzyk,
& Wang, 2012; Massel et al., 2011; Tsang & Caves, 2010), and
elsewhere. The mathematical framework for these models is pro-
vided by the theory of quantum Wiener processes, and the as-
sociated Quantum Stochastic Differential Equations (Hudson &
Parthasarathy, 1984; Meyer, 1995; Parthasarathy, 1999). Potential
applications of LQSSs include quantum information processing,
quantum measurement and control. In particular, an important
application of LQSSs is as coherent quantum feedback controllers
for other quantum systems, i.e. controllers that do not perform any
measurement on the controlled quantum system, and thus, have
the potential to outperform classical controllers, see e.g. Crisafulli,
Tezak, Soh, Armen, and Mabuchi (2013), Hamerly and Mabuchi
(2012, 2013), James, Nurdin, and Petersen (2008), Maalouf and
Petersen (2011), Mabuchi (2008), Nurdin, James, and Petersen
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(2009), Yanagisawa and Kimura (2003a, b), and Zhang and James
(2012).

The ways LQSSs can interact are of particular importance to
applications such as the synthesis of larger LQSSs in terms of simple
ones, the design of coherent quantumobservers and controllers for
LQSSs, etc. For concreteness, in this work we shall use terminology
and examples from quantum optics. First, the light beam from an
output of an LQSS to an input of another LQSS (carrying a quantum
optical signal plus quantum noise), provides a directional coupling
between the LQSSs. This sort of coupling of LQSSs is referred to as
indirect, or field-mediated interaction, and, depending on the sort of
connection, namely feedforward or feedback, it can be uni- or bi-
directional. Additionally,wemayhave a direct interaction between
LQSSs. This occurs when light beams from different LQSSs meet
inside an optical device or material (Nurdin, James, & Doherty,
2009). These interactions are always Hamiltonian, hence, bidirec-
tional. In thiswork, all Hamiltonian interactions between LQSSs are
meant to be bilinear, see Section 3. Direct interactions have been
considered in Miao, James, and Ugrinovskii (2015), Nurdin, James,
and Doherty (2009), Petersen (2014a, b), Petersen and Huntington
(2016a), Sichani, Vladimirov, and Petersen (2015) and Zhang and
James (2011) for the applications mentioned above.

Contrary to the interactions between physical systems like
atoms or elementary particles, that occur naturally, direct in-
teractions between engineered LQSSs must themselves be engi-
neered. In Nurdin, James, and Doherty (2009, Subsection 6.4), a
scheme for the implementation of a direct interaction between two
single-mode LQSSs (generalized harmonic oscillators), is proposed.
In Petersen and Huntington (2015, 2016b), implementations are
proposed for the direct coupling observer of Petersen (2014b),
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one without, and one with input/output ports for the observer.
(In LQSSs, every port is necessarily both an input and an output.)
An implementation for the direct coupling observer of Petersen
(2014a) is proposed in Petersen and Huntington (2017). All of
these implementations are case-specific, however, and involve
single-mode LQSSs (and qubits). To the authors’ knowledge, there
does not exist a scheme in the LQSS literature for the imple-
mentation of arbitrary Hamiltonian interactions between arbitrary
LQSSs.

It is exactly this issue that the present work addresses. Our
scheme entails modifying the original LQSSs by adding extra ports,
and creating an isolated feedback loop, by connecting the extra
port inputs of one system to the extra port outputs of the other
system, and vice-versa. It turns out that, this scheme can realize
any bilinear Hamiltonian interaction between the LQSSs. Since the
interacting LQSSs can have an arbitrary number of modes and
ports, our method does not provide details of the construction
to the level that Nurdin, James, and Doherty (2009) and Petersen
and Huntington (2015, 2016b, 2017) do, for their specific cases.
Nevertheless, the modified LQSSs and the linear static network
necessary for the implementation of the direct interaction, see
Section 3, can be implemented using the general synthesis results
in Braunstein (2005), Leonhardt and Neumaier (2004), Nurdin
(2010), Nurdin, James, and Doherty (2009) and Reck, Zeilinger,
Bernstein, and Bertani (1994).

We should point out that, for specific LQSSs and desired Hamil-
tonian interactions, theremay exist other, case-specific implemen-
tations, such as in Nurdin, James, and Doherty (2009) and Petersen
and Huntington (2015, 2016b, 2017), perhaps even optimized in
some sense. The proposed implementation, however, is general.
Thus, we hope that it will open the door to more extensive use
of Hamiltonian interactions in LQSS applications. For example, our
method would be useful in implementing coherent quantum con-
trollers employing direct interactions (Miao et al., 2015; Sichani et
al., 2015; Zhang & James, 2011), and direct coupling observers for
general LQSSs (Petersen & Huntington, 2016a). Furthermore, the
equivalence of the feedback architecture considered in this work
between two LQSSs, with a Hamiltonian interaction model, can
be used to design coherent quantum controllers employing this
architecture, as the example of Section 4 demonstrates.

The remainder of the paper is organized, as follows: In Section 2,
we establish some notation and terminology used in the paper,
and provide a short overview of LQSSs. In Section 3, we introduce
the general model of a bilinear Hamiltonian between LQSSs, and
present our scheme for its implementation via feedback, see Theo-
rem1. In Section 4, we present an application to coherent quantum
control design. Section 5 concludes the paper.

2. Background material

2.1. Notation and terminology

In this subsection, we establish the notation and terminology
used throughout this paper:

(1) x∗ denotes the complex conjugate of a complex number x or
the adjoint of an operator x, respectively. For a matrix X =

[xij] with complex or operator entries, X#
= [x∗

ij], X
⊤

= [xji]
is the usual transpose, and X†

= (X#)⊤. The commutator of
two operators X and Y is defined as [X, Y ] = XY − YX .

(2) The identity matrix in k dimensions will be denoted by Ik,
and a r × s matrix of zeros will be denoted by 0r×s. Let
J2k =

(0k×k Ik
−Ik 0k×k

)
. When the dimensions can be inferred

from context, we shall simply use I , 0, and J. δij denotes the
Kronecker delta symbol, i.e. I = [δij]. diag(Z1, Z2, . . . , Zk)

is the block-diagonal matrix formed by the square matrices
Z1, Z2, . . . , Zk, and ImA denotes the range of a matrix.

(3) For a matrix X ∈ C2r×2s, define its ♯-adjoint X♯, by X ♯
=

−J2sX†J2r . The ♯-adjoint satisfies properties similar to the
usual adjoint, namely (x1A + x2B)♯ = x∗

1A
♯
+ x∗

2B
♯, (AB)♯ =

B♯A♯, and (A♯)♯ = A.
(4) A matrix T ∈ C2k×2k is called symplectic, if it satisfies TT ♯

=

T ♯T = I2k ⇔ TJ2kT †
= T †J2kT = J2k. Hence, any symplectic

matrix is invertible, and its inverse is its ♯-adjoint. The set
of these matrices forms a non-compact Lie group known as
the symplectic group. Real symplectic matrices constitute a
subgroup of the (complex) symplectic group.

2.2. Linear quantum stochastic systems

The material in this subsection is fairly standard, and our pre-
sentation aimsmostly at establishing notation and terminology. To
this end, we follow mostly the review paper (Petersen, 2016). For
the mathematical background necessary for a precise discussion
of LQSSs, some standard references are Hudson & Parthasarathy
(1984), Meyer (1995) and Parthasarathy (1999), while for a Physics
perspective, see Gardiner & Collett (1985) and Gardiner & Zoller
(2000). The references Edwards & Belavkin (2005), Gough, Gohm,
& Yanagisawa (2008), Gough & James (2009), Gough, James, &
Nurdin (2010) and Nurdin, James, & Doherty (2009) contain a lot
of relevant material, as well.

The systems we consider in this work are collections of quan-
tum harmonic oscillators interacting among themselves, as well as
with their environment. The ith harmonic oscillator (mode), i =

1, . . . , n, is described by its position and momentum variables, qi
and pi, respectively. These are self-adjoint operators satisfying the
Canonical Commutation Relations (CCRs) [qi, qj] = 0, [pi, pj] = 0,
and [qi, pj] = ıδij, for i, j = 1, . . . , n. If we define the vectors of
operators q = (q1, q2, . . . , qn)⊤, p = (p1, p2, . . . , pn)⊤, and x =

(q
p

)
,

the CCRs can be expressed as

[x, x⊤
]

.
= xx⊤

− (xx⊤)⊤ =

(
0 ıIn

−ıIn 0

)
= ıJ2n. (1)

The environment is modelled as a collection of zero temper-
ature bosonic quantum fields. The ith field, i = 1, . . . ,m, is
described by bosonic field annihilation and creation operators Ai(t)
and A∗

i (t), respectively. The field operators are adapted quantum
stochastic processeswith forward differentials dAi(t) = Ai(t+dt)−
Ai(t), and dA∗

i (t) = A∗

i (t+dt)−A∗

i (t). They satisfy the quantum Itô
products dAi(t)dAj(t) = 0, dA∗

i (t)dA
∗

j (t) = 0, dA∗

i (t)dAj(t) = 0,
and dAi(t)dA∗

j (t) = δijdt . If we define the vector of field operators
A(t) = (A1(t),A2(t), . . . ,Am(t))⊤, and the vector of self-adjoint
field quadratures

V(t) =
1

√
2

(
A(t) + A(t)#

−ı(A(t) − A(t)#)

)
,

the quantum Itô products above can be expressed as

dV(t)dV(t)⊤ =
1
2

(
Im ıIm

−ıIm Im

)
dt =

1
2
(I2m + ıJ2m)dt. (2)

To describe the dynamics of the harmonic oscillators and the
quantum fields, we introduce certain operators. We begin with the
Hamiltonian operator H =

1
2x

⊤Rx, which specifies the dynamics
of the harmonic oscillators in the absence of any environmental
influence. R ∈ R2n×2n is a symmetric matrix referred to as the
Hamiltonian matrix. Next, we have the coupling operator L (vector
of operators) that specifies the interaction of the harmonic oscil-
lators with the quantum fields. L depends linearly on the position
and momentum operators of the oscillators, and can be expressed
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