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a b s t r a c t

This paper presents a novel Second Order Sliding Mode (SOSM) control algorithm for a class of nonlinear
systems subject to matched uncertainties. By virtue of its Event-Triggered nature, it can be used as a basis
to construct robust networked control schemes. The algorithm objective is to reduce as much as possible
the number of data transmissions over the network, in order not to incur in problems typically due to the
network congestion such as packet loss, jitter and delays, while guaranteeing satisfactory performance
in terms of stability and robustness. The proposed Event-Triggered SOSM control strategy is theoretically
analysed in the paper, showing its capability of enforcing the robust ultimately boundedness of the sliding
variable and its first time derivative. As a consequence, it is also possible to prove the practical stability
of the considered system, in spite of the reduction of transmissions with respect to a conventional SOSM
control approach. Moreover, in order to guarantee the avoidance of the notorious Zeno behaviour, a lower
bound for the time elapsed between two consecutive triggering events is provided.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Networked Control Systems (NCSs) are the obvious solution to
control problems in several field implementations because of their
advantages in terms of flexibility and reduction of modification
and update costs. In NCSs, the presence of the network in the
control loop can determine a deterioration of the performance
because of critical issues such as packet loss and transmission de-
lays (Hespanha, Naghshtabrizi, & Xu, 2007). Usually, the network
malfunctions tend to increase with the network congestion. Thus,
the design of control schemes able to reduce the transmissions
over the network can be beneficial. In the literature, the so-called
Event-Triggered (ET) control (Donkers & Heemels, 2012; Tabuada,
2007; Tallapragada & Chopra, 2014; Wu, Gao, Liu, & Li, 2017)
has been proposed as an effective solution for NCSs. In contrast
to conventional time-triggered implementation, which features
periodic transmissions of the state measurements, ET control ap-
proach enables the state transmission only when some triggering
condition is satisfied (or violated). For this reason, ET control can
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reduce the transmissions over the network avoiding the possible
network congestion.

On the other hand, Sliding Mode (SM) control is a well-known
robust control approach, especially useful to control systems sub-
ject to matched uncertainties (Utkin, 1992). The same holds for
higher order and, in particular, Second Order Sliding Mode (SOSM)
control (Dinuzzo & Ferrara, 2009; Levant, 2003), in which not only
the sliding variable but also its time derivatives are steered to zero
in a finite time. This is confirmed by the numerous applications de-
scribed in the literature (see, for instance, Cucuzzella, Incremona,
& Ferrara, 2015, 2017; Cucuzzella, Rosti, Cavallo, & Ferrara, 2017;
Cucuzzella, Trip, De Persis, & Ferrara, 2017).

In this paper, SOSM control and ET control are coupled to design
a novel robust control scheme with a reduced transmission re-
quirement that can be appropriate for NCSs (Cucuzzella & Ferrara,
2016; Ferrara & Cucuzzella, 2018). The proposed control approach
is based on two triggering conditions and two control laws that de-
pend on the sliding variable and its first time derivative. Moreover,
the proposed control strategy is very easy to implement, it does
not require to transmit the state at any time instant, and by virtue
of its low implementation complexity, it can be adequate also
in case of NCSs. Moreover, the proposed algorithm provides the
reduction of the control amplitude when the origin of the auxiliary
system state space is approached, with a consequent reduction of
the total control energy. The considered system controlled via the
proposed strategy is theoretically analysed in the paper, proving
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the ultimately boundedness, in a suitable convergence set, of the
sliding variable and its first time derivative, even in presence of the
uncertainties. In the paper it is also proved that in the convergence
set an approximability property analogous to that of classical SM
control holds. As a consequence, it is also possible to prove the
practical stability of the considered uncertain nonlinear system.
Finally, in order to guarantee the avoidance of the notorious Zeno
behaviour, a lower bound for the time elapsed between two con-
secutive triggering events is provided.

2. Problem formulation

Consider the uncertain nonlinear system

ẋ = a(x) + b(x)u + dm(x), (1)

where x ∈ Ω (Ω ⊂ Rn bounded) is the state vector, the value
of which at the initial time instant t0 is x(t0) = x0, and u ∈

[−Umax,Umax] is the input, while a(x) : Ω → Rn and b(x) : Ω →

Rn are uncertain functions of class C1(Ω). Moreover, the external
disturbance dm is assumed to be matched, i.e.,

dm(x) = b(x)d, d ∈ D ⊂ R, (2)

Dsup
:= supd∈D{|d|} being a known positive constant. Define a

suitable output function (the so-called ‘‘sliding variable’’) σ : Ω →

R of class C2(Ω), it being defined as follows.

Definition 1 (Sliding Variable). σ is a sliding variable for system (1)
provided that the pair (σ , u) has the following property: if u in (1) is
designed so that, in a finite time t⋆r ≥ t0, ∀ x0 ∈ Ω, σ = 0 ∀ t ≥ t⋆r ,
then ∀ t ≥ t⋆r the origin is an asymptotically stable equilibrium
point of (1) constrained to σ = 0.

Now, regarding the sliding variable σ as the controlled variable
associated with system (1), assume that system (1) is complete
in Ω and has a uniform relative degree equal to 2. The following
definitions are introduced.

Definition 2 (Ideal SOSM). Given t⋆r ≥ t0 (ideal reaching time), if
∀ x0 ∈ Ω, σ = σ̇ = 0 ∀ t ≥ t⋆r , then an ‘‘ideal SOSM’’ of system (1)
is enforced on the sliding manifold σ = σ̇ = 0.

Definition 3 (Practical SOSM). Given tr ≥ t0 (practical reaching
time), if ∀ x0 ∈ Ω, |σ | ≤ δ1, |σ̇ | ≤ δ2 ∀ t ≥ tr , then a ‘‘practical
SOSM’’ of system (1) is enforced in a vicinity of the slidingmanifold
σ = σ̇ = 0.

Moreover, assume that system (1) admits a global normal form
in Ω , i.e., there exists a global diffeomorphism of the form Φ =

[Ψ , σ , a·∇σ ]
T

= [xr , ξ ]
T , withΦ : Ω → ΦΩ (ΦΩ ⊂ Rn bounded),

and Ψ : Ω → Rn−2, ∇σ = (∂σ/∂x1, . . . , ∂σ/∂xn)T , xr ∈

Rn−2, ξ = [σ , σ̇ ]
T

∈ R2, such that⎧⎨⎩ẋr = ar (xr , ξ ) (a)
ξ̇1 = ξ2 (b)
ξ̇2 = f (xr , ξ ) + g(xr , ξ )(u + d), (c)

(3)

with ar =
∂Ψ
∂x a, f = a · ∇(a · ∇σ ), and g = b · ∇(a · ∇σ ). Note

that, since a, b are functions of class C 1(Ω), and σ is a function of
class C 2(Ω), withΩ ⊂ Rn bounded, then functions f , g exist for all
(xr , ξ ) ∈ ΦΩ . Moreover, as a consequence of the uniform relative
degree assumption, one has that g ̸= 0. In the literature, see for
instance Dinuzzo and Ferrara (2009), subsystem (3)(b)–(3)(c) is
called ‘‘auxiliary system’’. Since ar , f , g are continuous functions
and ΦΩ is a bounded set, one has that

∃ F > 0 : |f (xr , ξ )| ≤ F , ∃ Gmax > 0 : g(xr , ξ ) ≤ Gmax. (4)

In this paper we assume that F and Gmax are known. Moreover, we
assume that

Fig. 1. The proposed single-loop networked control scheme.

∃ Gmin > 0 : g(xr , ξ ) ≥ Gmin, (5)

Gmin being a priori known.
Relying on (3)–(5), a first control problem can be stated.

Problem 1. Design a feedback control law

u⋆
= κ(σ , σ̇ ), (6)

with the following property: ∀ x0 ∈ Ω, ∃ t⋆r ≥ t0 such that
σ = σ̇ = 0, ∀ t ≥ t⋆r , in spite of the uncertainties.

Note that the solution to Problem 1 is in fact a control law
capable of robustly enforcing an ‘‘ideal SOSM’’ of system (1)–(5)
in a finite time (see Definition 2). In other terms, any SOSM control
law is an admissible solution to Problem 1. Note that, since σ is
selected to be a sliding variable (see Definition 1), if Problem 1 is
solved, one has that ∀ x0 ∈ Ω , the origin of the state space is a
robust asymptotically stable equilibrium point for (1)–(5).

Typically, the state is sampled at time instants tk, k ∈ N, and
the control law is computed as u(t) = u(tk), ∀t ∈ [tk, tk+1[,
the sequence {tk}k∈N being periodic, with T = tk+1 − tk a priori
fixed (‘‘time-triggered’’). In this paper, instead of relying on time-
triggered executions, we will introduce two triggering conditions,
transmitting the values ofσ , σ̇ and u onlywhen such conditions are
verified (‘‘event-triggered’’). Moreover, we assume that the plant
is equipped with a particular zero-order-hold, indicated in Fig. 1
with ZOH∗, capable of holding constant u, ∀ t ∈ [tk, tk+1[. Relying
on (3)–(5), we can formulate the problem that will be solved in the
paper.

Problem 2. Design a feedback control law

u = u(tk) = κ(σ (tk), σ̇ (tk)) ∀ t ∈ [tk, tk+1[, (7)

with the following property: ∀ x0 ∈ Ω, ∃ tr ≥ t0 such that
|σ | ≤ δ1, and |σ̇ | ≤ δ2, ∀ t ≥ tr , in spite of the uncertainties,
with δ1 and δ2 positive constants arbitrarily set.

Note that the solution to Problem2 is an event-triggered control
law capable of robustly enforcing a ‘‘practical SOSM’’ of system
(1)–(5) in a finite time (see Definition 3) when a ZOH∗ is used to
generate u(t).

3. The proposed solution

The control scheme proposed to solve Problem 2 is reported in
Fig. 1. The existence of a communication network is considered.
Yet, we do not explicitly model the network, but we propose a
control strategy such that the number of transmissions is reduced
to avoid the network congestion. Under these considerations we
assume that at the time instants when the triggering conditions
are verified, the network is available (we refer to Ferrara and
Cucuzzella, 2018 for the case with delayed transmissions due to
the unavailability of the network). The proposed control scheme
contains two key blocks: the ‘‘Smart Sensor’’ and the ‘‘Controller’’.
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