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a b s t r a c t

In this paper, the problem of nonlinear Sliding Mode (SM) output regulation is addressed. In particular, a
state feedback SM regulator problem is formulated, taking the concepts related to the zero output tracking
submanifold as a starting point, and a solution is proposed for general nonlinear affine control systems
subject to unmodeled time-varying disturbance. Then, the problem is studied for the particular class of
nonlinear systems presented in the so-called Regular form. The effectiveness of the proposed method is
demonstrated by the application to the Pendubot system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One of themost important problems in nonlinear control theory
is the design of a feedback law having the output of a controlled
plant asymptotically tracking a prescribed smooth reference signal
while rejecting a disturbance generated by some external au-
tonomous system or exosystem. The first solutions to this problem
were presented in Francis andWonhem (1976) for linear systems,
and then extended to the nonlinear setting in Huang (2004)
and Isidori (1995). In these approaches, the feedback schemes
were based on the ‘‘internal model principle’’, incorporating a
solution of the regulator equation: the Francis equation in the linear
case, and the Francis–Isidori–Byrnes (FIB) equation for nonlinear
systems.

In recent years, the robustness issue has become important.
The design of robust regulators for nonlinear systems with un-
certain parameters has been investigated in several works (see
Chen & Huang, 2005; Huang, 1995; Huang & Chen, 2004; Huang
& Lin, 1994; Marconi, Praly, & Isidori, 2012; Memon & Khalil,
2010; Seshagiri & Khalil, 2005; Zheng & Zhong, 2013). However,
in these works, the robustness issue has been considered for plant
parameters variations only, while in the real situation, model un-
certainty can be presented due to both parameters variations and
external unmodeled disturbance. It is worth noting that the presence
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of external unknown time-varying disturbance leads to a time-
varying regulator equation (Yang & Huang, 2012) which cannot
be solved due to the presence of unknown disturbance term.

An alternative approach for dealing with this problem is to
combine the output regulation theory with the SM control tech-
nique (Utkin, Guldner, & Shi, 1999), which allows decomposing
and simplifying the regulator design procedure and imposing ro-
bustness properties with respect to unmodeled disturbance, at
least to a matched one (Drazenović, 1969). The output regulation
problem solution via SM technique has been broadly studied in
the last two decades by several authors (see, among others Elmali
& Olgac, 1992; Govindaswamy, Floquet, & Spurgeon, 2014; Lai,
Edwards, & Spurgeon, 2005; Zheng & Zhong, 2013) mainly formin-
imum phase systems. Few works were addressed to non-minimum
phase systems, however, just for the case of linear systems (Jeong
& Utkin, 1999; Utkin & Utkin, 2014), and for the particular case of
nonlinear systems with unitary relative degree (Bonivento, Mar-
coni, and Zanasi, 2001).

In this paper, the SM output regulation problem is studied in
the general setup for nonlinear affine control systems and class
of systems presented in Regular form subject to unmodeled time-
varying disturbance, that included both minimum phase and non-
minimum phase systems with arbitrary relative degree. Using the
results presented in Yang and Huang (2012), it is shown that
the corresponding time-varying regulator equation obtained for
the complete system cannot be solved because of the presence
of an unknown disturbance term. Based on the equivalent control
method (Utkin et al., 1999), the internalmodel approach is applied
to the reduced order SM equation which is invariant w.r.t. the
time-varying matched disturbance resulting in the corresponding
time-invariant regulator equation. Once solving this reduced order
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regulator equation, getting the center manifold and defining the
control errors, a slidingmanifold is proposed onwhich the dynam-
ics of the closed-loop nonlinear system are constrained to evolve
by means of a discontinuous control law, instead of designing a
linear stabilizing feedback, as in the case of the classical output
regulation problem. The designed sliding manifold contains the
particular center manifold, and the dynamics of the closed-loop
system tends asymptotically along the sliding manifold, to the
steady-state behavior, achieving the asymptotic output tracking
and thus making unnecessary to obtain the analytic solution of the
time-varying regulator equation.

The main contributions of the paper are:

– the deriving of the solution existence conditions for nonlin-
ear affine control systems in the general setup and for a class
of those systems presented in Regular formwith unmodeled
time-varying matched disturbance,

– the designing of a SM regulator with a sliding manifold on
which the tracking error tend asymptotically to zero in the
presence of unmodeled time-varying matched disturbance.

It is worth noting that the presented results are applicable to
nonlinear non-minimum phase systems. Therefore, to show the
effectiveness of the proposed approach, the SM regulator approach
is applied to the sub-actuated Pendubot, which is a non-minimum
phase system.

The rest of this work is organized as follows. In Section 2, the
state feedback SM output regulation problem formulation is pre-
sented, and, in Section 3, the problem is solved for the general setup
of nonlinear affine control systems. The solvability conditions for
the presented problem are derived for a class of systems having
the Regular Form in Section 4. Section 5 deals with the application
of the proposed method to the Pendubot system. Final comments
conclude the work in Section 6.

2. Problem statement and assumptions

Consider a nonlinear affine system subject to perturbations

ẋ = f (x) + B(x)(u + γ (x, t)) + D(x)w (1)

y = h(x) (2)

with state x, defined in a neighborhood X of the origin of ℜ
n, and

u ∈ ℜ
m, y ∈ ℜ

p; γ (x, t) is an unmodeled disturbance vector
that includes plant parameter variations and external disturbance,
rankB(x) = m ∀ x ∈ X .

The control objective is to design a state feedback controller
which enables bringing the tracking error

e = y − q(w), q(0) = 0 (3)

to zero. Here, the reference signal q(w) is generated by the exosys-
tem

ẇ = φ(w), w ∈ W ⊂ Rs, φ(0) = 0. (4)

Denoting A0 =
[
∂ f (x)
∂x

]
(0), C0 =

[
∂h
∂x

]
(0), B0 = B(0), the following

assumptions are introduced:
H1. The pair {A0, B0} is stabilizable.
H2. The Jacobian matrix S =

[
∂φ

∂w

]
(0) at the equilibrium point w = 0

has all eigenvalues on the imaginary axis.
H3. The unknown disturbance vector γ (x, t), γ ∈ ℜ

m is bounded by

∥γ (x, t)∥ ≤ γ0, γ0 > 0, (5)

in an admissible regionΩ .
H4. The vectors x and w are available for measurement.

Assumption H1 is clearly needed to locally stabilize the SM
dynamics. Assumption H2 is standard for the output regulation
problem while Assumption H3 specifies a class of unknown dis-
turbances which are bounded and satisfy the matching condi-
tion (Drazenović, 1969), as it is usually considered in a robust SM
control system design.

Finally, due to lack of space, the attention is focused on the
solvability of the State Feedback Regulator (SFR) problem with
known x and w (Assumption H4), and a robust error feedback
problem is left for future work.

In the classical setup, in absence of the disturbance, that is,
g(x, t) = 0, it has been shown that the solvability of the SFR prob-
lem can be stated in terms of the existence of a pair of mappings
x = π (w) and u = c(w) with π (0) = 0 and c(0) = 0 which solves
the following regulator equation:

∂π (w)
∂w

φ(w) = f (w) + B(w)c(w) + D(w)w (6)

0 = h(π (w)) − q(w) (7)

and the classical control provided by a linear state feedback u =

λ(w) + K0(x − π (w)) with a Hurwitz matrix (A0 + B0K0) can
locally stabilize the system (1) ensuring the tracking error (3) tends
asymptotically to zero. In presence ofγ (x, t), it can be assumed that
there exist smooth functions πs(w, t) and cs(w, t) with πs(0, t) =

0 and cs(0, t) = 0 such that the following expression holds (Yang
& Huang, 2012):

dπs(w, t)
dt

= f (w, t) + B(w, t)(cs + γ (w, t)) + D(t, w)w (8)

0 = h(πs(w, t)) − q(w). (9)

Obviously these equations are impossible to solve with unknown
γ (w, t). To overcome this problem, in this paper, the SM technique
will be implemented to design a regulator with a sliding manifold
which will use the solution π (w) of Eqs. (6)–(7) instead of πs(w, t).

Following the regulation theory, the local center manifold is
introduced based on (6)–(7) as

ε(x, w) = 0, ε = x − π (w) with π (0) = 0. (10)

Then, the local change of variables (10) transforms (1) and (2) into

ε̇ = f (ε,w) + B(ε,w) [u + γ (ε,w, t)] + D(ε,w)w

−
∂π (w)
∂w

φ(w) (11)

e = h(ε,w) − q(w) (12)

where f (ε,w) = f (x)x=ε+π (w), B(ε,w) = B(x)x=ε+π (w), D(ε,w) =

D(x)x=ε+π (w), γ (ε,w, t) = γ (x, t)x=ε+π (w) and h(ε,w) =

h(x)x=ε+π (w).
Now, the state feedback SMoutput regulationproblem is defined

as the problem of finding a smooth sliding function s(ε), s ∈ ℜ
m

such that the following conditions hold:

– (SMSef ) (Sliding Mode Stability). The state of the system (1)
(or (11)) with a quasi continuous (or discontinuous) state
feedback converges in finite time to the sliding manifold

s(ε) = 0, s = (s1, . . . , sm)T (13)

which contains the steady-state (central) manifold (10), and
the closed-loop system dynamics tend asymptotically along
the sliding manifold (13) to the steady-state behavior.
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