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a b s t r a c t

In this paper, we present an internal model approach for the leader-following rendezvous and con-
nectivity preservation problem for a class of multi-agent systems, where both the follower and leader
systems can be assumed to contain the strong nonlinearity, as well as the external disturbances and the
parametric uncertainties. With the suitable choice of the potential function, two types of internal model
based distributed controllers are developed for handling both cases of the certain and uncertain leaders,
respectively. By innovatively constructing the intrinsical nonlinear relationship between the rendezvous
error and the virtual rendezvous error, we can obtain the corresponding gain functions in both controllers
that are able to conquer not only the strong nonlinearity of control plant but also the nonlinearity caused
by the potential function. Finally, the validity of our design is illustrated by an example.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The rendezvous problem of multi-agent systems originated
from the nature behaviors of the social animals, the study of
which is well motivated by the real applications such as mobile
sensing network, intelligent transportation system and so on, see
the survey paper (Zavlanos, Egerstedt, & Pappas, 2011). Different
from the other coordinated control problems, such as consensus,
where the network is predefined and imposed with connectiv-
ity assumptions, the rendezvous problem requires the network
among the agents to dynamically evolve and be determined by
agents’ states themselves. Some representative works concerning
such state-dependent network can be found in Ando, Oasa, Suzuki,
and Yamashita (1999) and Lin, Morse, and Anderson (2007). In
order to solve the rendezvous problem, it is necessary to enable
the distributed controller the property of achieving the global
convergence of the rendezvous errors of all agents, and, more
importantly, the capability of maintaining the connectivity of the
network. The potential function has been shown to be a significant
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tool for connectivity preservation, which can generate sufficient
force to keep initially connected agents close enough so that they
can stay in the sensing range. So far, by combining the potential
function and some other robust or adaptive control tools, the
rendezvous problem has been intensively studied for linear multi-
agent systems (Dimarogonas & Johansson, 2010; Ji & Egerstedt,
2007; Saboori, Nayyeri, & Khorasani, 2013; Su, Wang, & Chen,
2010; Zavlanos et al., 2011), some mechanical systems including
under-actuated vehicles (Ajorlou & Aghdam, 2013) and Euler–
Lagrange robots (Mao, Dou, Fang, & Chen, 2013), some simple
nonlinear multi-agent systems, such as homogeneous networked
Lipschitz nonlinear multi-agent system with unit relative degree
(Cao, Ren, Casbeer, & Schumacher, 2016) and in the second order
form (Su, Chen, Wang, & Lin, 2011), heterogeneous second-order
nonlinear multi-agent systems with system dynamics satisfying
certain bounded conditions (Feng, Sun, & Hu, 2015), just to name
a few. With the aid of some bounded potential function, Saboori
et al. (2013) studied such problem for linear multi-agent systems
subject to actuator saturation, while Wen, Duan, Su, Chen, and Yu
(2012) extended the technique to solve the flocking problem for
the same system dynamics as Su et al. (2011).

Also by applying the potential function technique, the ren-
dezvous problem has recently been solved under the output reg-
ulation framework by a distributed observer based feedforward
control (Dong & Huang, 2014b) and a distributed internal model
design (Su, 2015), respectively. However, both of them focused
only on linear multi-agent systems. In contrast with the other
control schemes, rendezvous control under the output regulation
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framework is able to achieve asymptotic tracking and disturbance
rejection simultaneously for a multi-agent system in the leader-
following scenario. In particular, the internal model based ap-
proach can further deal with the parametric uncertainty in both
follower and leader systems.

To satisfy the requirement for the application of rendezvous
problem in the real physical systems, the purpose of this paper
is to further present an internal model approach for the leader-
following rendezvous problem for a group of nonlinear multi-
agent systems subject to both plant uncertainties and external
disturbances. Both cases of the certain and uncertain leaders are
taken into consideration, where in the former case, the controller
can be obtained by the internal model based robust control design,
while in the latter, we need to further combine adaptive control for
estimating the uncertain parameter in the leader system. The con-
tribution of this paper is mainly of two folds. First, in contrast with
those concerning connectivity preservation algorithms intended
for linear multi-agent systems and nonlinear multi-agent systems
satisfying global Lipschitz condition or with bounded system dy-
namics (Cao et al., 2016; Feng et al., 2015; Su et al., 2011), this paper
develops a novel internal model based connectivity preservation
algorithm that has the ability of handling the more general strong
nonlinearities as well as uncertainties and disturbances. Second,
compared with the internal model approaches for the output
regulation problem of nonlinear multi-agent systems in the fixed
network (Dong & Huang, 2014a; Su & Huang, 2013; Xu, Hong,
& Wang, 2014) and for the rendezvous problem of linear multi-
agent systems (Su, 2015), our design is much more challenging
in that the design of the gain function has to handle not only
the strong nonlinearity of each plant but also the nonlinearity
caused by the potential function so as to preserve the network
connectivity. Technically, as will be shown in Lemma 3 and later,
this challenge can be conquered by establishing the inequality of
the nonlinear functions between the rendezvous error and the
virtual rendezvous error. Notice that such an inequality is non-
trivial here, since the relationship between the rendezvous error
and the virtual rendezvous error is intrinsical nonlinear instead of
the linear one in Dong and Huang (2014a), Su and Huang (2013)
and Xu et al. (2014), and the functions in this inequality are all
intrinsical nonlinear ones as opposed to the linear ones in Su
(2015).

The reminder of this paper is organized as follows. In Section 2,
we formulate our problem precisely and provide some prelimi-
naries. In Section 3, we present our main result. An example is
illustrated in Section 4. Finally,we close this paper in Section 5with
some concluding remarks.

2. Problem statement & preliminaries

In this section, we first describe our problem, and then provide
some preliminaries for the solvability of our problem.

2.1. Problem statement

Consider a class of nonlinear multi-agent systems as follows:

ẏi = gi(yi, v, w) + ui, i = 1, . . . ,N, (1)

where yi ∈ Rn is the position vector of agent i, ui ∈ Rn is the
input, w ∈ Rnw is an uncertain parameter vector, and v(t) ∈

Rnv is an exogenous signal representing both reference input and
disturbance. The signal v(t) is assumed to be generated by the
leader system that is of the following form:

v̇ = S(σ )v, y0 = q(v,w), (2)

where y0 ∈ Rn is the output of the leader system and represents
the reference signal, and S(σ ) ∈ Rnv×nv with σ ∈ Rnσ denoting

the parameter in the leader system. Here we call the N subsystems
of (1) as N followers of the leader (2). We call the leader certain if
the parameter σ is known for the feedback design, and uncertain
if otherwise. We suppose that all functions in (1) and (2) are
globally defined, sufficiently smooth, and satisfy gi(0, 0, w) = 0,
i = 1, . . . ,N , and q(0, w) = 0 for all w ∈ Rnw .

Inspired by Ji and Egerstedt (2007), with respect to the sys-
tem composed of (1) and (2), we can define a state-dependent
time-varying graph1 Ḡ(t) = (V̄, Ē(t)) where V̄ = {0, 1, . . . ,N}

with node 0 associated with the leader system (2) and node i =

1, . . . ,N , associated with the ith subsystem of (1), and Ē(t) ⊆

V̄×V̄ . The set V̄ is called the node set of Ḡ(t) and the set Ē(t) is called
the edge set of Ḡ(t). We use the notation N̄i(t) ≜ {j : (i, j) ∈ Ē(t)}
to denote the neighbor set of the node i for i = 1, . . . ,N . The
definition of Ē(t) associated with the system composed of (1) and
(2) is determined by the following rules: given any r > 0 and
ϵ ∈ (0, r), for any t ≥ 0, Ē(t) = {(i, j) | i, j ∈ V̄} is defined such that

1. Ē(0) = {(i, j) : ∥yi(0) − yj(0)∥ < r − ϵ, i, j = 1, . . . ,N} ∪

{(0, j) : ∥y0(0) − yj(0)∥ < r − ϵ, j = 1, . . . ,N};
2. if ∥yi(t) − yj(t)∥ ≥ r , then (i, j) ̸∈ Ē(t);
3. (i, 0) ̸∈ Ē(t), for i = 0, 1, . . . ,N;
4. for those (i, j) ̸∈ Ē(t−) with i = 0, 1, . . . ,N , j = 1, . . . ,N , if

∥yi(t) − yj(t)∥ < r − ϵ, then (i, j) ∈ Ē(t).

Here (i, j) ∈ Ē(t) means that position difference between the ith
and jth agents is smaller than the sensing range, i.e., ∥yi−yj∥ < r . In
this case, the ith agent can sense the signal yi−yj for the feedback at
time t .We also define the rendezvous error between the leader and
the ith follower as ei = yi−y0, i = 1, . . . ,N . Notice that ei relies on
the leader’s signal y0, and hence is not available for those that are
not connectedwith the leader system. Alternatively, wewill resort
to the virtual rendezvous error that is evi =

∑
j∈N̄i(t)

wij(t)(yi − yj),
which depends on the position difference of its neighbors. Here
wij(t) are some nonlinear functions determined by the potential
function that will be given later. Then the problem of leader-
following rendezvous with connectivity preservation is described
as follows:

Given the multi-agent system composed of (1) and (2), and any
arbitrarily prescribed compact set V0 × W × σ ⊆ Rnv+nw+nσ , find
a control law of the form ui = h1i(ηi, evi), η̇i = h2i(ηi, evi), i =

1, . . . ,N, where ηi ∈ Rnηi , h1i and h2i are functions vanishing at the
origin, such that, for all v(0) ∈ V0, col(w, σ ) ∈ W × σ and all initial
conditions yi(0), i = 1, . . . ,N, that make Ḡ(0) connected, the closed-
loop system has the properties that Ḡ(t) is connected for all t ≥ 0 and
limt→∞ei(t) = 0, i = 1, . . . ,N.

Remark 1. Considering the real physical systems, the rendezvous
problem we study here is addressed to the nonlinear multi-agent
systems given by (1), containing strong nonlinearities, as well as
uncertainties anddisturbances, leading to the failure of the existing
rendezvous algorithms. For simultaneously handling these issues,
wewill develop a novel internal model approach for this nonlinear
case.

2.2. Preliminaries

In what follows, we will seek an internal model approach for
solving this problem. The internal model for nonlinear systems has
been well-defined, see Chen and Huang (2015, Sections 7.2 & 7.3).
In the rest of this section, for making the paper self-contained, we
briefly repeat its construction as well as the standard assumptions
that guarantee its existence. It is well-known that the solvability
of the regulator equations (Isidori & Byrnes, 1990) is necessary for

1 See the monograph (Godsil & Royle, 2001) for the graph theory and notation.
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