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a b s t r a c t

We considermulti-sensor fusion estimation for clustered sensor networks. Both sequential measurement
fusion and state fusion estimationmethods are presented. It is shown that the proposed sequential fusion
estimation methods achieve the same performance as the batch fusion one, but are more convenient
to deal with asynchronous or delayed data since they are able to handle the data that are available
sequentially. Moreover, the sequential measurement fusionmethod has lower computational complexity
than the conventional sequential Kalman estimation and themeasurement augmentationmethods, while
the sequential state fusionmethod is shown to have lower computational complexity than the batch state
fusion one. Simulations of a target tracking system are presented to demonstrate the effectiveness of the
proposed results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Fusion estimation for sensor networks has attracted much re-
search interest during the last decade, and has found applications
in a variety of areas (Cao et al., 2014; Chen, Li, & Lai, 2013; He,
Wang, Ji, & Zhou, 2011; Ilic, Xie, Khan, &Moura, 2010;Oka& Lampe,
2010). Compared with the centralized structure, the distributed
structure is more preferable for sensor networks because of its
reliability, robustness and low requirement on network bandwidth
(Dong, Wang, & Gao, 2012; Duan & Li, 2011; He et al., 2011; Millan
et al., 2013; Yan, Xiao, Xia, & Fu, 2013).When thenumber of sensors
is large, it is wasteful to embed in each sensor an estimator and
the communication burden is high. Moreover, for long-distance
deployed sensors, itmaynot bepossible to allocate communication
channels for all sensors. An improvement is to adopt the hierarchi-
cal structure for distributed estimation (Song, Zhang, & Yu, 2014;
Zhang, Qi, & Deng, 2014), by which all the sensors in the network
are divided into several clusters and the sensors within the same
cluster are connected to a cluster head (CH) which acts as a local
estimator. Then, the distributed estimation is carried out in two
stages. In the first stage, the local estimator in each cluster fuses the
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measurements from its cluster to generate a local estimate. Then,
the local estimators exchange and fuse local estimates to produce a
fused estimate to eliminate any disagreements among themselves.

Various results on multi-sensor fusion estimation for sensor
networks have been available in the literature, including central-
ized fusion and distributed fusion, as well as measurement fusion
and state fusion (Bar-Shalom & Li, 1995; Deng, 2006; Hu, Duan, &
Zhou, 2010; Julier & Uhlman, 2009; Ran & Deng, 2009; Roecker
& McGillem, 1988; Song, Zhu, Zhou, & You, 2007; Sun & Deng,
2004; Xia, Shang, Chen, & Liu, 2009; Xing & Xia, 2016; Zhang,
Chen Michael, Liu, & Liu, 2017; Zhang, Liu, & Yu, 2014). However,
most of the results are based on the idea of batch fusion, that is,
measurements or local estimates are fused all at a time at the
fusion instant until all of them are available at the estimator, as
illustrated in Fig. 1(a). Such a batch fusion estimation may induce
long computation delay, thus it is not appropriate for real-time
applications. A possible improvement is to adopt the idea of se-
quential fusion (Aran, Burger, Caplier, & Akarun, 2009; Shen, Luo,
Zhu, & Song, 2012), by which the measurements or local estimates
are fused one by one according to the time order of the data
arriving at the estimator, as illustrated in Fig. 1(b). In this way, the
fusion and the state estimation could be carried out over the entire
estimation interval, which help reduce computation burdens at the
estimation instant and ultimately reduce the computation delay.
Some relevant results on sequential fusion estimation have been
presented in Deng, Zhang, Qi, Liu, and Gao (2012), Huang and Qin
(2010) and Yan, Li, Xia, and Fu (2013, 2015). The results in Yan, Li et
al. (2013) and Yan et al. (2015) provide an efficient measurement
fusion estimation approach to deal with asynchronous or delayed
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(a) Batch fusion estimation. (b) Sequential fusion estimation.

Fig. 1. Examples of batch fusion estimation and sequential fusion estimation.

Fig. 2. A structure of hierarchical fusion estimation for clustered sensor networks.

data, and the idea is similar to the conventional sequential Kalman
filtering, where the state estimate is updated several times by se-
quentially fusing the various measurements generated at different
time instants, and both the procedures of state prediction and
measurement updating are involved over each step of the estimate
updating. An alternative approach is to fuse all the measurements
first, and then generate the state estimate based on the fused
measurement. This is the novel method introduced in this paper.
In Deng et al. (2012), the sequential covariance intersection (CI)
fusionmethodwas presented for state fusion estimation. However,
the CI fusion is not optimal since the cross-covariances among the
various local estimates are ignored. An improved sequential state
fusion estimation method was presented in Huang and Qin (2010)
by taking the cross-covariances among the local estimates into
consideration and using the matrix weights approach.

In this paper, both sequential measurement fusion (SMF) esti-
mation and state fusion estimation (SSF) methods are developed
for clustered sensor networks, where the SMF is presented for local
estimation, while the SSF is presented for state fusion estimation
among all the local estimators. Themain contributions of the paper
are summarized as follows:

(1) We present a design method for the SMF estimators. We
show that the SMF estimator is equivalent to the conventional
sequential Kalman (SK) and the batch measurement fusion (BMF)
estimators, and is equivalent to the one designed based on mea-
surement augmentation (MA). We also show that the SMF estima-
tor has lower computational complexity than the estimators based
on SK and MA.

(2)We present a designmethod for the SSF estimatorswithma-
trix weights. We further show that the SSF estimator is equivalent
to the batch state fusion (BSF) estimators with matrix weights but
has much lower computational complexity.

Notation: For a random variable x ∈ ℜ
n, we denote its mean by

E{x} and its covariance by Var{x}. x ⊥ y denotes orthogonal vectors
x and y, x̂ and x̃, respectively, denote the estimate and estimation
error of the state x. P(k) = P(k|k) = Var{x̃(k)} represents the
estimation error covariance, tr(A) denotes the trace of the matrix
A, and diag{·} stands for a block-diagonal matrix.

2. Problem statement

Consider the hierarchical fusion estimation for clustered sensor
networks as shown in Fig. 2, where the plant, whose state is to be
estimated, is described by the following discrete-time state-space
model:

x(k + 1) = A(k)x(k) + B(k)ω(k) (1)

where x(k) ∈ ℜ
nx is the system state, and ω(k) ∈ ℜ

nω is a zero-
mean white Gaussian noise with variance Qω . A sensor network
with m clusters is deployed to monitor the state of system (1).
The set of the clusters is denoted by Φ = {1, . . . ,m}. Let Ns =

{1, . . . , ns} denote the sth cluster in the sensor network, where
s ∈ Φ and ns is the number of sensors in the cluster Ns. The
ns sensors are connected to a cluster head (CH) es serving as an
estimator. The measurement equation of each sensor is given by

ys,i(k) = C(k)x(k) + υs,i(k), i ∈ Ns, s ∈ Φ (2)

where ys,i(k) ∈ ℜ
q, υs,i(k) is a zero-mean white Gaussian noise

with variance Rs,i, and υs,i(k) are mutually uncorrelated and are
uncorrelated with ω(k).

As shown in Fig. 2, the fusion estimation is carried out in two
stages. At the first stage, each CH collects and fuses measurements
sequentially from its cluster, then generates a local estimate using
the fusedmeasurement. At the second stage, each CH collects local
estimates from itself and the other CHs to produce a fused state
estimate using the SSFmethod to improve estimation performance
and eliminate any disagreements among the estimators.

3. Design of the SMF estimators

This section is devoted to the design of the SMF estimators
for each cluster. Consider cluster Ns, s ∈ Φ . For notational con-
venience, the subscript s in the notations will be dropped in the
remaining of this section, for example, ys,i(k) is denoted as yi(k)
and ns is denoted as n. Denote ysf (k) as the fused measurement
and Y (k) = {y1(k), . . . , yn(k)} as the set of measurements for
fusion. Then it can be seen from Fig. 1(b) that ysf (k) is obtained by
sequentially fusing the n measurements. The fused measurement
and its noise variance of the jth fusion over the interval (k−1, k] are
denoted by y(j)(k) and R(j)(k), respectively, where j ∈ {1, 2, . . . , n−

1}. Denote the measurement noise of y(j)(k) as υ(j)(k), then y(j)(k) =

C(k)x(k)+υ(j)(k), and R(j)(k) = Var{υ(j)(k)}. In the remainder of this
section, unless stated otherwise, the time index k will be dropped
for notational convenience.We now introduce the first main result
on SMF estimator.

Theorem1. For themeasurements in Y (k), the SMF estimator is given
by the following equations:

R(j) =
[
R−1
(j−1) + R−1

j+1

]−1
(3)

y(j) = R(j)
[
R−1
(j−1)y(j−1) + R−1

j+1yj+1
]

(4)

where j = 1, . . . , n − 1, y(0) = y1, R(0) = R1, and the fused
measurement ysf and its noise variance Rs

f are given by ysf = y(n−1)
and Rs

f = R(n−1), respectively. Moreover, one has R(j) ≤ R(j−1) and
Rs
f (k) ≤ Ri, i ∈ {1, . . . , n}.

Proof. Denote fm as the sequential measurement fusion operator,
then y(j) = fm{y(j−1), yj+1}. Augment y(j−1) and yj+1 to get

z(j) =

[
y(j−1)

yj+1

]
= eCx + ῡ(j) (5)

where e = [I I]T and ῡ(j) = [υT
(j−1) υT

j+1]
T. Let R̄(j) = Var{ῡ(j)}.

The term z(j) can be regarded as a measurement of Cx with the
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