Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC-PapersOnLine 49-6 (2016) 063—068

A Virtual Laboratory for the Prototyping
of Cyber-Physical Systems

Alessandro Beghi*, Fabio Marcuzzi **, Mirco Rampazzo *

* Department of Information Engineering, University of Padova, via
G. Gradenigo 6/B, 1-35131 Padova, Italy.
E-mail: {beghi, rampazzom} @dei.unipd.it.
** Department of Mathematics, University of Padova, Via Trieste 63,
1-35121 Padova, Italy.
E-mail: marcuzzi@math.unipd.it

Abstract:

Cyber-physical systems (CPS) refer to novel hardware and software compositions creating smart,
autonomously acting devices, enabling efficient end-to-end workflows and new forms of user-
machine interaction, in a wide range of application fields. Given their heterogeneous nature,
CPS are naturally designed in the so-called simulation-centric process, where physical equipment
design are translated into behavioral simulation models. Although many tools exist to ease the
design phase in the different disciplines, their full integration is still an open problem. This
fact holds particularly true in a control-design perspective, given that in a CPS the “plant”
has a heterogeneous nature, and the design of model-based, advanced control techniques would
strongly benefit from the availability of a common modelling environment. In this paper, we try
to enhance this simulation-centric process by introducing a pure simulation kind of prototype,
based on the co-simulation of the firmware and of the multi-physical controlled system. We
introduce some innovative tools, implemented in pLab/CfL, and discuss upon their impact
towards a better collaborative design and integration during the design of CPS. An example is
given, taken from the HVAC (Heating, Ventilation, and Air Conditioning) field.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Virtual Laboratory, Cyber-physical systems, Control, HVAC, IXTEX, Python

1. INTRODUCTION

Cyber-physical systems (CPS) refer to novel hardware
and software compositions creating smart, autonomously
acting devices, enabling efficient end-to-end workflows and
new forms of user-machine interaction. In manifold emerg-
ing application domains such as health care, traffic man-
agement or energy supply, CPS carry a high potential for
creating new markets and solutions to societal hazards,
but impose highest requirements to quality in terms of
resilience, safety, security and privacy, Kim and Kumar
(2012), Derler et al. (2012), Baheti and Gill (2011). How-
ever, the heterogeneous, multi-physics, evolving and dis-
tributed nature of CPS bears major challenges to continu-
ously assure these quality requirements employing state of
the art methods and technologies. Foundational research
efforts are needed to achieve a predictable quality level
in an efficient, traceable and measurable way, coping ef-
ficiently with external and internal changes, supporting
necessary transitions between mechanical, electrical and
software engineering, as well as integrating management,
design and deployment aspects.

CPS are naturally designed in the so-called simulation-
centric process, where physical equipment design is trans-
lated into behavioral simulation models. These simulation
models are then used to develop model-based control sys-
tems. These subsystem simulations and model-based code

are then used to perform real-time hardware-in-the-loop
(HIL) simulation for early integration testing, following
the paradigm of Virtual Prototyping. Finally, the early-
integration lab is transformed into the last stage integra-
tion facility as physical prototypes are delivered for final
acceptance testing in scheduled releases.

The mark of a highly effective simulation-centric process
is collaborative design and integration during each design
simulation and real-time simulation stage. Such collab-
oration and integration requires the interaction among
experts of different fields, each typically using their own
simulation/design environment/tools, such as CAD Tools
(e.g. Catia, ProEngineering, SolidWorks), behavioral mod-
elling (e.g. ADAMS, Simulink, Dymola), and CACSD tools
(e.g. Matlab/Simulink, Rhapsody), Junjie et al. (2012).
Although some of such tools can operate in co-simulation
(see for instance the coupling between Matlab/Simulink
and ADAMS), their overall integration is still far from be-
ing satisfactory, Al-Hammouri (2012). Moreover, it would
be preferable that all the experts from the different fields
could exploit a common environment, so as to easily share
and integrate their different skills. This fact holds partic-
ularly true in a control-design perspective, given that in a
CPS the “plant” can have heterogeneous nature, as is typ-
ical in a multi-physics approach, and the design of model-
based, advanced control techniques can strongly benefit
from the availability of a common modelling environment.

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.154

64 Alessandro Beghi et al. / [FAC-PapersOnLine 49-6 (2016) 063068

In this paper, we try to enhance this simulation-centric
process by introducing a pure simulation kind of proto-
type, based on the co-simulation of the firmware and of
the multi-physical controlled system. This kind of pro-
totype does not require any specific hardware, like HIL
does, and can e.g. exploit emerging simulation paradigms
like the cloud computing. To this purpose, we introduce
in this simulation-centric process some innovative tools,
implemented in pLab/CfL, Marcuzzi (2013), Crafa et al.
(2014), and discuss upon their impact towards a better
collaborative design and integration during the design of
CPS.

More precisely: we describe an equation modelling frame-
work and compare it with other approaches to physical
systems modelling (section 2), we adopt an alias/bindings
architecture to integrate in a single simulation model all
the implementations done during the design cycle of the
control system, from the initial control algorithm proto-
type to the final control firmware installed in the produc-
tion equipment (section 3), we exploit the interoperability
of firmware and Python scripts, in the co-simulation of the
control logic, to achieve a better efficiency in prototyping
the control algorithms and a smooth transition of their
implementations, from the early prototype to the final
product. In section 4 we discuss in general the possible
impact of these tools on Virtual Prototyping of CPS and
in section 5 we give an example taken from the HVAC
(Heating, Ventilation, and Air Conditioning) field.

2. MODELLING APPROACHES

There is an existing modelling language which is com-
mon among engineers of different flavours: it is that of
mathematical equations. What it is usually not shareable
among them is the computer representation of these equa-
tions. Engineers more affine to computer science prefer-
ably use for modelling purposes text-based computer lan-
guages (C/C++, Fortran, Java, Matlab, etc.), while others
use visual languages/tools specific for their applications
(ADAMS for mechanics, FlowMaster for fluid dynamics,
SPICE for electronic circuits, Simulink for control systems
are only a few examples). In both cases, mathematical
equations are hidden and the model can be understood
only through a substantial knowledge of the computer
language/tool adopted.

We consider here a tool, CfL Crafa et al. (2014), which
converts automatically a mathematical model written in
ETEX into a Python script ready-to-use within a co-
simulation environment like pLab, Marcuzzi (2013). More
details about these tools can be found in Appendices A
and B. In this way, we can apply model-based control
techniques with a more efficient methodology, since it is
based on a shareable model among mechanical, control,
electrical, and software engineers.

Analytic models are a good compromise for control sys-
tems modelling, even if mechanical engineers often de-
velop much more detailed multi-physical models. Here we
consider a concentrated-parameter model, as usually done
in the simulation of control systems, but in mechanical
engineering distributed-parameters models, e.g. Finite El-
ement models are often used, Hughes (2000). When a
complex multi-physical model is available and a simpler

analytical model could be more appropriate for control
purposes, the integration between these different models
can be made by means of System Identification techniques,
e.g. a reduced-order model can be built from simulation
data. Complex physical models, like that produced by
state-of-the-art mechanical modelling tools, produce accu-
rate simulation data that can be used to do system iden-
tification on reduced-order analytical models, Friswell and
Mottershead (1995), retaining a good physical meaning.
This enforces integration among control and mechanical
engineers, rather difficult to obtain, instead, with black-
box system identification, which is not a standard back-
ground of mechanical engineers and it is practically not
present in the mechanical modelling tools.

3. FROM THE CONTROL ALGORITHM TO THE
CONTROL FIRMWARE

As with models, the control logic is also initially conceived
as a quite abstract algorithm, before implementing it e.g.
in C language for a microcontroller. Again, mathemati-
cal equations are the common language that make this
logic understandable also to non programmers. CfL can
translate these equations in a Python script, which can
be used in the co-simulation within pLab as if it were
the control firmware, see Fig. 1. In this case the script
instructions interact directly with the pins of the abstract
microcontroller model.

Fig. 1. In the co-simulation, physical system components
are represented by blocks containing mathematical
models, and the overall system as an interconnection

of blocks.

At this stage, the co-simulation model can be set at an high
level of abstraction, and can be e.g. debugged/analysed
with the same simplicity as an usual PC program (like
Matlab/Simulink, Rhapsody, etc.). The next prototyping
steps will usually refine this model by adding details about
the real-time control: microcontroller interrupt-driven ar-
chitecture and peripherals, sensors and actuators physical
models, communication devices, etc., and a control logic
implementation that evolves by mixing firmware layers and
Python scripts, and arrives at the production firmware, co-
simulated in a real microcontroller model.

Thanks to the alias/bindings model architecture intro-
duced in plLab, the engineers can define abstract project

Download English Version:

https://daneshyari.com/en/article/710921

Download Persian Version:

https://daneshyari.com/article/710921

Daneshyari.com

https://daneshyari.com/en/article/710921
https://daneshyari.com/article/710921
https://daneshyari.com

