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a b s t r a c t

For a real-time system (RTS) processing both sporadic and (multiple-period) periodic tasks, this study
presents a novel modular modeling framework to describe the parameters of tasks, conforming to the
pertinent concepts and techniques of discrete-event systems (DES). A task is represented by an automaton
synchronized by the modular models corresponding to its parameters. As a consequence, a DES model
depicting the RTS is synchronized by the DES representing these tasks. Based on supervisory control
theory, priority-free conditionally-preemptive (PFCP) real-time scheduling is solved by finding all the
safe execution sequences. Finally, the PFCP scheduling is illustrated by real-world examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Supervisory control theory (SCT) (Cury, De Queiroz, Bouzon, &
Teixeira, 2015; Ramadge & Wonham, 1987; Wonham & Cai, 2017)
aims to discover general principles common to a wide range of
application domains such as manufacturing systems, traffic sys-
tems, database management systems, communication protocols,
and logistic (service) systems. SCT has been implemented for real-
time scheduling (Alareqi, Gorges, & Liu, 2015; Fontanelli, Greco,
& Palopoli, 2013; Veenman & Scherer, 2014) of real-time sys-
tems (RTS), in which real-time tasks are modeled following two
different approaches: timed discrete-event systems (TDES) (Chen
& Wonham, 2002; Janarthanan, Gohari, & Saffar, 2006; Park &
Cho, 2008; Wang, Li, & Wonham, 2016) and (untimed) discrete-
event systems (DES) (Wang, Li, & Wonham, 2017). For the TDES-
based real-time scheduling, SCT can provide optimal schedulers
satisfying the preemptive or non-preemptive scheduling policies
defined in specifications. Wang et al. (2017) show that both pre-
emptive and non-preemptive scheduling policies are conservative,
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i.e., some scheduling specifications may not be consistent with
the preemptive or non-preemptive scheduling policies. Based on
SCT, a novel real-time scheduling principle, namely priority-free
conditionally-preemptive (PFCP) real-time scheduling, is devel-
oped. Accordingly, some classic real-time scheduling policies such
as fixed-priority (FP) scheduling (Liu & Layland, 1973), preemption
threshold scheduling (PTS) (Wang et al., 2015; Wang & Saksena,
1999), and deferred preemption scheduling (DPS) (Baruah, 2005)
are considered as consequences of the developed specifications.

SCT-based real-time scheduling (Chen & Wonham, 2002; Ja-
narthanan et al., 2006; Park & Cho, 2008; Wang et al., 2016, 2017)
is a newly-identified research topic. In this study, a formal and
unifiedmodular real-time task framework is developed, which can
be utilized to model both multiple-period and sporadic tasks that
are not constrained by periods. Based on thismodeling framework,
each RTS can be built via a three-step approach: (1) the task
parameters are represented by modular DES models; (2) the task
behavior is constrained by themodular DESmodels corresponding
to its parameters; and (3) the RTS model is constrained by the
DES real-time task models corresponding to the running tasks.
According to the PFCP principle, all the safe execution sequences in
anRTSprocessing bothmultiple-periodperiodic and sporadic tasks
can be found. This model is applied to a real-world manufacturing
example.

The rest of this paper is organized as follows. The modular
real-time task model is described in Section 2. By applying the
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supervisory control of DES to real-world systems, Section 3 reports
applications of real-time schedulingwith priority-free conditional-
preemption. Further relevant issues are discussed in Section 4.
Finally, Section 5 concludes this paper.

2. Modular sporadic RTS model

This study deals with sporadic RTS processing sporadic and/or
multiple-period tasks. Sporadic RTS and the corresponding modu-
lar DES models are defined below.

2.1. Basic concepts

A DES plant is a generator G = (Q , Σ, δ, q0,Qm) where Q is the
finite state set; Σ is the finite event set (alphabet); δ : Q × Σ → Q
is the partial state transition function; q0 is the initial state; and
Qm ⊆ Q is the subset ofmarked states. In accordancewith Wonham
and Cai (2017), Σ+ is the set of all the possible strings of symbols
in Σ . After adjoining the empty string ϵ, the set of strings over
the alphabet Σ is written as Σ∗, i.e., Σ∗

= Σ+
∪ {ϵ}. Function

δ can be extended to δ : Q × Σ∗
→ Q . We write δ(q, s)! to

mean that δ(q, s) is defined, where state q ∈ Q and string s ∈

Σ∗. The length |s| of a string s ∈ Σ∗ is defined as |ϵ| = 0;
|s| = k, if s = σ1σ2 · · · σk ∈ Σ+. If L ⊆ Σ∗, the prefix closure
of language L is denoted by L consisting of all prefixes of strings
of L. The closed behavior of generator G is represented by formal
language L(G) := {s ∈ Σ∗

|δ(q0, s)!} and the corresponding marked
behavior is Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G). Synchronous
product (Wonham & Cai, 2017) is a standard operation to combine
a finite set of DES into a single andmore complex one. Given nDES,
where Li ⊆ Σ∗

i with Σ =
⋃

i∈nΣi, and n := {1, 2, . . . , n}, the
natural projection Pi : Σ∗

→ Σ∗

i is defined by (1) Pi(ϵ) = ϵ, (2)

Pi(σ ) =

{
ϵ, if σ ̸∈ Σi
σ , if σ ∈ Σi

, and (3) Pi(sσ ) = Pi(s)Pi(σ ), s ∈ Σ∗, σ ∈ Σ .

The inverse image function of Pi is P−1
i : Pwr(Σ∗

i ) → Pwr(Σ∗). For
H ⊆ Σ∗

i , P
−1
i (H) := {s ∈ Σ∗

|Pi(s) ∈ H}. The synchronous product of
L1, L2, . . . , Ln is denoted by L1∥L2∥ · · · ∥ Ln with L1∥L2∥ · · · ∥ Ln :=

P−1
1 L1 ∩ P−1

2 L2 ∩ · · · ∩ P−1
n Ln .

2.2. Sporadic RTS model

In a sporadic RTS, a sporadic task has an irregular arrival time
and an either soft or hard deadline; a periodic task has a regular
arrival time and a hard deadline. The period of a periodic task could
be: equal to the corresponding deadline (Liu & Layland, 1973),
greater than the deadline (Nassor & Bres, 1991), ormultiple (Wang
et al., 2016). In case the minimum period of a multiple-period
periodic task is equal to its maximum period, it is a traditional
periodic task.

Suppose that a uniprocessor sporadic RTS S processes a
set of independent real-time tasks discussed above, i.e., S =

{τ1, τ2, . . . , τn}. For i ∈ n = {1, 2, . . . , n}, if τi ∈ S is periodic, it
is specified as a four-tuple τi = (Ri, Ci,Di, Ti) with a release time
Ri, a worst-case execution time (WCET ) Ci, a hard deadline Di, and
a multiple-period Ti, where Ri, Ci, and Di are integer multiples of
the processor time unit. A multiple-period (Wang et al., 2016) is a
period set containing several possible periods (positive integers):
the minimum (resp., maximum) period is represented by Timin
(resp., Timax ). Thus,we have Ti = [Timin , Timax ]. Only a period T in Ti of
task τi is selected in each scheduling period. Normally,Di is ignored
in case Di = Timax . Since release time and periods are not assigned
to sporadic tasks, a sporadic task is specified by a pair τi = (Ci,Di).

Fig. 1. WCET model.

2.3. Modular DES models

In accordancewith Wang et al. (2017), the alphabet (set of event
labels) Σi describing the processor’s behavior to execute task τi is:

• γi: task τi is released;
• αi: the execution of τi is started;
• βi: the execution of τi is completed;
• ci (i ∈ n): τi starts to be processed in the processor for one

processor time unit; and
• l: empty action, i.e., no task is being processed in the follow-

ing processor time unit.

The global event set of an RTS S is denoted by Σ = Σ1 ∪

Σ2 ∪ · · · ∪ Σn. As a consequence, the WCET, release time, period,
and deadline of a task running in S are described by languages
over Σ . The alphabet Σ is partitioned into controllable events and
uncontrollable events. Formally,Σ = Σc∪̇Σu, withΣc = {αi, ci|i ∈

n} as the controllable event subset and Σu = {βi, γi, l|i ∈ n} as the
uncontrollable event subset. Moreover, Σi is also partitioned into
the operation event set Σo = {γi, αi, βi|i ∈ n} and the execution
event set Σe = {ci, l|i ∈ n}.

2.3.1. WCET model
A sporadic (resp., periodic) task τi describes an infinite stream

of jobs arriving at irregular (resp., regular) time intervals. Suppose
that n sporadic/periodic tasks are running in an RTS. For each task
τi, i ∈ n, itsWCET Ci is represented by a DES generator GC

i . Suppose
that s ∈ Σ∗ and accordingly s∗ represents ϵ + s + s2 + · · · . The
marked language Lm(GC

i ) overΣ describes the execution sequences
of task τi, i.e.,

Lm(GC
i ) = (uvw)∗ (1)

with

• u, w ∈ Ll = l∗ = ϵ + l + l2 + · · · ; and
• v ∈ La = (γiαi(ci)Ciβi)∗.

Language La (resp., Ll) represents τi arriving (resp., never arriv-
ing), inwhich (ci)Ci means the execution of task τi. TheWCETmodel
is depicted in Fig. 1.

2.3.2. Release time and period model
Generally, for any periodic task τi, we have Ci ≤ Timin . Let T be an

arbitrary period, i.e., Timin ≤ T ≤ Timax . In a period, after the release
of τi, Ci time units are utilized to process τi. According toWang et al.
(2017), the other T−Ci time units are occupied by other tasks τj in S
(τi ̸= τj) or alternatively left idle. A release time and period model
for τi is presented, which describes the system behavior before its
first release and in each period T . The marked language Lm(GT

i ) is
over Σ , i.e.,

Lm(GT
i ) = Lr + u(γiv)∗ (2)

with

• u ∈ Lr = {s|s ∈ (Σe − {ci})∗ & |s| = Ri}; and
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