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a b s t r a c t

This paper investigates the problem of output feedback control for a class of stochastic feedforward
systems with unknown control coefficients and unknown output function. Since many unknowns occur
into the systems, all the states of the systems are unmeasurable or unknown which means that they
are not available in the control scheme. To compensate these unmeasurable/unknown states, a new
form of K-filters with time-varying low-gain is introduced in our design. As long as output function
belongs to any close sector included in the maximal sector region of systems’ output function, we
can design a time-varying output feedback control law by integrating the well-known backstepping
framework with the time-varying technique. Later, based on the improved LaSalle-type theorem, we
analyze the regulation of the closed-loop systems. Finally, an induction heater circuit system with
unknown inductance/capacitance is given to show the effectiveness of our control scheme.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, based on the stochastic stability theory (Khasmin-
ski, 1980; Mao, 2007), the problem of output feedback stabi-
lization for stochastic nonlinear systems has been paid more
attention by many researchers. Deng and Krstić (1999) proposed
a powerful tool–backstepping design method to study the globally
asymptotic stabilization of stochastic nonlinear systems via output
feedback. By employing the homogeneous system theory, Li, Xie,
and Zhang (2011) considered the output feedback stabilization
of stochastic nonlinear systems in lower-triangular form under
weaker condition. More efforts have been achieved in Deng and
Krstić (2000), Krstić andDeng (1998), Liu and Zhang (2006) and ref-
erences therein. However, these works only focused on stochastic
lower-triangular systems. As we all know, many practical physical
models can be described by upper-triangular (feedforward) sys-
tems, such as cart-pendulum systems (Mazenc & Bowong, 2003),
ball-beam systems with a friction term (Sepulchre, Jankovic, &
Kokotovic, 1997) and an induction heater circuit system (Lander,
1987). Hence, the output feedback control of such systems is an
important topic in the control field. By designing homogeneous
reduced-order observers with a static low-gain, Liu, Yu, Yu, and
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Zhou (2014) investigated the output feedback stabilization of
stochastic feedforward systems with state time-delay. Zhang,
Zhao, and Xie (2015) extended the results to stochastic high-
order case. Besides, Zha, Zhai, Fei, and Wang (2014) considered
the global finite-time stabilization by output feedback of stochastic
feedforward systems.

Note that the above works mainly relied on the precise infor-
mation on the control coefficients and the growth rate of non-
linearity during the control scheme. However, these information
may always be unknown in practical applications, therefore how to
cope with the global stabilization of nonlinear systems with these
unknowns is a hot issue. To overcome this obstacle, Liu (2013)
developed the time-varying technique to design output feedback
controllers for uncertain lower-triangular systems with unknown
control coefficients and unknown growth rate. For the stochas-
tic case, Li and Liu (2015) introduced a form of K-filters with
time-varying high-gain to study the output feedback regulation
of stochastic lower-triangular systems. Jiao, Zheng, and Xu (2016)
studied the state feedback stabilization of stochastic feedforward
systemswith unknowngrowth rate via the time-varying technique
and the improved LaSalle-type theorem. As unknown output func-
tion is admitted into systems, the authors in Jiang, Zhang, and Xie
(2017) considered the global stabilization of stochastic nonlinear
systems in lower-triangular form. More related results can be
found in Jia, Xu, Cui, Zhang, and Ma (2016), Liu, Ge, and Zhang
(2008), Li and Liu (2017), Li, Xie, and Zhang (2017), Liu, Zhang,
and Jiang (2007), Wang and Wei (2015), Wu, Chen, and Li (2016),
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Wu, Li, Zong, and Chen (2017), Zhang, Mu, and Liu (2017) and
references therein. Naturally, an important and unsolved problem
is proposed: How can we achieve the output feedback stabilization
of stochastic feedforward systems with unknown control coefficients
and unknown output function?

In this paper, we will answer this question. The main contribu-
tions of this paper are concluded as follows:

(i) Different from the existing literature on stochastic feedfor-
ward systems,many unknowns occur in the systems. Owing to this
fact, the adaptive methods adopted in the literature (Liu & Xie,
2013; Liu et al., 2014; Zha et al., 2014; Zhang et al., 2015; Zhao
& Xie, 2014) are not applicable. Therefore, in this paper, we will
introduce a novel time-varying gain, instead of a static gain used in
Liu and Xie (2013), Liu et al. (2014), Zha et al. (2014) and Zhang et
al. (2015), into the backstepping framework. Later, a time-varying
output feedback controller is designed recursively. Meanwhile, we
also analyze the convergence of the solution to the close-loop
system, rather than the stability (e.g., globally asymptotic stability
Liu and Xie, 2013, Liu et al., 2014, Zhao and Xie, 2014, Zhang et al.,
2015 or finite-time stability in probability Zha et al., 2014).

(ii) The systems considered in this paper own upper-triangular
structures and unknown output function. It means that the time-
varying high-gain observers (for example, the observers in Liu
(2013) or the K-filters in Li and Liu, 2015) are invalid here. Hence,
we need to design a new form of K-filters with low-gain to com-
pensate the unmeasurable/unknown states.

The rest of this paper is organized as follows. In Section 2,
several useful lemmas, problem formulation and three assump-
tions are presented. In Section 3, a coordinate transformation and
a new form of K-filters are given explicitly. Then, a time-varying
output feedback controller is designed in Section 4 by using the
time-varying technique and backstepping method. In Section 5,
a simulation is given to illustrate our theoretical results. Finally,
Section 6 provides some conclusions.

Note: Throughout this paper,R+ denotes the set of positive real
numbers, Z+ denotes the set of positive integers, In denotes the
n× n identity matrix, Rn denotes the Euclidean space, and Rn×m is
the set of all n × m real matrix. For any vector x ∈ Rn, |x| denotes
the Euclidean norm of vector x. A = (aij)N×N denotes a matrix of
N-dimension, λmax(A) and λmin(A) mean the largest and smallest
eigenvalues of matrix A, respectively, AT denotes the transpose of
A, tr{A} denotes its trace and ∥A∥ =

√
tr(ATA).

2. Preliminaries

Let w = (w1(t), . . . , wr (t))T be an r-dimensional Brownian
motion defined in a complete probability space (Ω,F, P) with a
filtration {Ft}t≥0 satisfying the usual conditions. In this paper, we
consider the following stochastic feedforward system⎧⎪⎨⎪⎩

dζi = (diζi+1 + f̄i(t, ζ , u))dt + ḡT
i (t, ζ , u)dw,

dζn = dnudt + ḡT
n (t, ζ , u)dw, i = 1, . . . , n − 1,

y = δ(ζ1),
(1)

where ζ = (ζ1, . . . , ζn)T ∈ Rn is the system state with the initial
data ζ (t0) = ζ0 and t0 being the initial time. u ∈ R and y ∈ R
are system’s control input and output, respectively. The unknown
constants di, i = 1, . . . , n, are the system’s control coefficients.
δ(·) : R → R is an unknown function satisfying δ(0) = 0.
f̄i : [t0, +∞) × Rn

× R → R, ḡi : [t0, +∞) × Rn
× R → Rr ,

i = 1, . . . , n − 1, and ḡn : [t0, +∞) × Rn
× R → Rr are

unknown continuous functions, which are assumed to be locally

Lipschitz1 in ζ and u with f̄i(t, 0, 0) = 0, ḡi(t, 0, 0) = 0, ḡn(t, 0, 0)
= 0.

Consider the following stochastic nonlinear system

dx = f (t, x)dt + g(t, x)dw, x(t0) = x0 ∈ Rn, (2)

where functions f : [t0, +∞)×Rn
→ Rn and g : [t0, +∞)×Rn

→

Rn×r are continuous in all arguments and locally Lipschitz in xwith
f (t, 0) = 0 and g(t, 0) = 0.

Let C2(Rn
;R+) be the family of all nonnegative functions V on

Rn which are continuously twice differentiable in x. For each V ∈

C2(Rn
;R+), define an operator LV associated with (2) as follows:

LV =
∂V
∂xT

f (t, x) +
1
2
tr

{
gT (t, x)

∂2V
∂x2

g(t, x)
}

. (3)

Lemma 1 (Zhao and Xie, 2014). Suppose that c and d are two positive
real numbers, x, y ∈ R. Then, for any real-valued functionγ (x, y) > 0,
we have |x|c |y|d ≤

c
c+dγ (x, y)|x|c+d

+
d

c+d (γ (x, y))−
c
d |y|c+d.

Definition 1 (Jiang et al., 2017, Li et al., 2017). A function δ : R → R
is said to belong to the sector [β1, β2] if (δ(s)−β1s)(δ(s)−β2s) ≤ 0,
where β1 and β2 are constants with β2 > β1.

Lemma 2 (Li et al., 2017). If a function δ belongs to some a sector
[β1, β2] with β2 > β1, then |δ(s) − s| ≤ max{|β1 − 1|, |β2 − 1|}|s|,
for all s ∈ R.

To achieve the stabilization of system (1),we need the following
lemma, which can be seen as an extension of Theorem 1 in Liu et
al. (2008):

Lemma 3. For system (2), if there exists a function V ∈ C2(Rn
;R+)

such that for some constant K > 0 and any t ≥ 0,

LV ≤ K (1 + V (t, x)), lim inf
|x|→∞

V (t, x) = ∞,

then, there exists a unique global solution on [t0, ∞).

Proof. Since both of terms f and g are locally Lipschitz in x, it
follows from Lemma 4 in Zhao and Deng (2016) that system (2)
exists a unique local strong solution. The rest of the proof can be
obtained by the similar method used in Theorem A.1 (Mao, 2002),
and thus we omit it for brevity.

In what follows, we state three important assumptions.

Assumption 1. For all i = 1, . . . , n − 1, there exists an unknown
growth rate ϑ > 0 and two known constants α1 ∈ [0, 1), α2 ∈

[0, 1/2) such that for all t ≥ t0, ζ ∈ Rn, and u ∈ R,

|f̄i(t, ζ , u)| ≤ ϑ(1 + tα1 ) (|ζi+2| + · · · + |ζn| + |u|) ,

|ḡi(t, ζ , u)| ≤ ϑ(1 + tα2 ) (|ζi+2| + · · · + |ζn| + |u|) ,

|ḡn(t, ζ , u)| ≤ ϑ(1 + tα2 )|u|.

Assumption 2. The unknown control coefficients di (i = 1, . . . , n)
have known signs and satisfy di ≤ |di| ≤ d̄i, where di, d̄i > 0 are
known constants.

Assumption 3. The output function δ(·) is Lipschitz continuous.

1 Throughout the paper, the local Lipschitz condition is defined as that proposed
in Zhao and Deng (2016), i.e., consider a Borel measurable function h : [t0, +∞) ×

Rn
→ Rn and for each n = 1, 2, . . . , there exists a continuous function cn(t) ≥ 0

such that for all t ≥ t0 , |x1| ≤ n and |x2| ≤ n, we have |h(t, x1) − h(t, x2)| ≤

cn(t)|x1 − x2|.
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