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a b s t r a c t

By injecting high frequency dither signals, it is possible to stabilize an inverted pendulum without any
feedback. The concept of the vibrational control system is thus proposed to provide extra design freedom
in stabilization or other performance indexes. Although various vibrational control algorithms have been
proposed and implemented in literature, little work has been done to show their robustness with respect
to disturbances and uncertainties. This paper focuses on the robustness analysis of linear vibrational
control systems with additive disturbances. By applying perturbation techniques, the linear vibrational
control system is shown to be input-to-state stable with respect to disturbances. When disturbances
are periodic, frequency analysis technique obtains a less conservative estimate of the ultimate bound of
the system, indicating that disturbances with high frequencies lead to relatively small ultimate bounds.
When additive state-dependent disturbances are considered, weak averaging techniques can be used to
show the robustness of the systemwhen bounded disturbances are slow time-varying. Numerical results
support the theoretic analysis.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The vibrational control method was proposed to stabilize
systems such as inverted pendulums in an open-loop fashion by in-
serting a high frequency dither instead of using feedback (Meerkov,
1980). It has been shown that high-frequency dithers can in-
troduce extra design freedom in stabilization and performance
improvement (Meerkov, 1980), making it attractive to many en-
gineering applications, see, for example, chemical reactors (Cinar,
Deng, Meerkov, & Shu, 1987), gas lasers (Meerkov & Shapiro, 1976)
and under-actuated robotics (Hong, 2002; Yabuno, Matsuda, &
Aoshima, 2005) and references therein.

We adapt the example of vibrational control system (Khalil,
1996 Example 8.10) to illustrate this idea. By vertically oscillating
the suspension point using a sine wave dither with a small am-
plitude but high frequency (Kapitsa, 1951; Stephenson, 1908), an
inverted pendulum can be locally stabilized.1 The dynamics model
of this system is presented as:

mlθ̈ + (mg − maω cosωt + ka sinωt) sin θ + klθ̇ = 0, (1)
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ω
to simplify the presentation.

where θ is the angular displacement, m is the mass, l is the length
of pendulum, k is the viscous friction coefficient, a and ω are the
amplitude and frequency of oscillating dither respectively. By lin-
earizing it around its equilibrium position at (π, 0), the linearized
model in state-space becomes:[
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(2)

It consists of two parts. One is the unstable Amatrix and the other
is the periodic matrix B(ωt) coming from the sinusoidal dither. It
has been proved that if the dither frequency ω is sufficiently large,
the inverted pendulum is locally stable (Bogoliubov &Mitropolski,
1961). This example shows that even though the equilibrium is
unstable, an open-loop controller using a high frequency dither
can locally stabilize the system. In this example, though dither is
inserted without using feedback, the system (2) has a ‘‘feedback-
like’’ structure. This feedback-like behavior in vibrational control
design was described as a natural interaction between the system
dynamics and vibrated component as pointed out in Shapiro and
Zinn (1997).

A thorough analysis of linear vibrational control systems in the
form of ẋ = Ax + B(ωt)x was introduced by Meerkov (1980).
In his seminal work, it was assumed that A has a controllable
canonical form. Under such a scenario, a necessary and sufficient
condition to ensure stabilization is that the trace of A is negative.
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Moreau and Aeyels (2004) used the idea of vibrational control to
enlarge the domain of attraction by designing a periodic output
feedback for linear-time-invariant (LTI) systems. Similarly, pole
assignment capabilities of vibrational control method were dis-
cussed in Kabamba, Meerkov, and Poh (1998). Recently, Berg pro-
posed a design tool using the concept of stability maps for a class
of second-order linear periodic systems (Berg & Wickramasinghe,
2015).

Subsequently, the framework of nonlinear vibrational control
systems was established by R. Bellman and J. Bentsman in Bell-
man, Bentsman, and Meerkov (1985, 1986a, b). The criteria of
stabilization, controllability and transient behavior for different
types of vibrational control systems were addressed. Shapiro and
Zinn (1997) showed that a class of dynamic system can be locally
stabilized by a nonlinear vibrational controller even if its Jacobian
matrix has a positive trace. This result shows that the vibrational
control method can be applied to a large class of engineering
systems.

Although various stability results of vibrational control systems
have been published, there is little work addressing the robustness
with respect to disturbances or uncertainties, which is one of the
most important performance requirements for engineering appli-
cations. This work focuses on linear vibrational control systems
and explores its robustness in the presence of two types additive
disturbances: one is state-independent and the other is state-
dependent.

In the motivating example, there are always external
forces/moments that can perturb the inverted pendulum. This
leads to a linear vibrational control system in the presence of state-
independent disturbances:

ẋ = Ax + B1(ωt)x + B2w(t), x(t0) = x0 ∈ Rn, (3)

where A ∈ Rn×n, B1 : [t0,∞) → Rn×n, B2 ∈ Rn×m, w :

[t0,∞) → Rm. Similarly, state-dependent disturbances such as
variation of friction coefficient can also appear thus robustness
analysis is important.

One of the key techniques in stability analysis of vibrational
control systems is averaging (Bellman et al., 1986b; Shapiro &
Zinn, 1997). The existence of disturbances would perturb the
averaged systems, leading to undesirable performance. When
state-independent disturbances are considered, the perturbation
technique (Khalil, 1996) can be applied to show the robustness.
When disturbances are bounded and periodic, by using frequency
analysis, our result shows that the ultimate bound of the system is
inversely proportional to the frequency of the disturbances.

When state-dependent disturbances are considered, neither
perturbation method nor frequency analysis can be directly ap-
plied. Recently, strong average and weak average techniques have
been developed to analyze the robustness of nonlinear time-
varying systems when taking disturbances into consideration
(Nešić & Teel, 2001). It is shown that the strong average of the
vibrational control system does not exist while the weak average
exists. By exploring the stability of the weak averaged system,
we show that the linear vibrational control system is robust to
bounded but slow time-varying disturbances.

The remainder of this paper is organized as follows. In Section
2, preliminaries are stated. Problem formulation and main results
are presented in Section 3 for state-independent disturbances.
Section 4 discusses the robustness of the linear vibrational control
systemswith respect to state-dependent disturbances, followed by
simulation examples in Section 5. Section 6 concludes the paper.
All proofs are provided in Appendix.

2. Preliminaries

The set of real numbers is denoted as R. A continuous function
γ : R≥0 → R≥0 belongs to class-K if it is strictly increasing and
γ (0) = 0. It is of class-K∞ if it belongs to class-K and is unbounded.
A function β : R≥0 × R≥0 → R≥0 is of class-KL if β(·, t) belongs
to class-K for each t ≥ 0 and β(s, ·) is decreasing to zero for each
s > 0. Define the infinity norm as ∥w∥∞ := ess supt≥0|w(t)|. If
∥w∥∞ < ∞, it can be called that w ∈ L∞.

2.1. Vibrational stabilization

In literature, a generic form of vibrational control systems is
(Bellman et al., 1985; Bullo, 2002; Meerkov, 1980):

ẋ = f (x) + g
(
t
ε
, x

)
, x(t0) = x0 ∈ Rn,∀t ≥ t0 ≥ 0, (4)

where f : Rn
→ Rn is continuous with an equilibrium point xe

such that f (xe) = 0. The nonlinear mapping g : [t0,∞)×Rn
→ Rn

is continuous in both arguments and T -periodic in time.

Definition 1 (Bellman et al., 1985). The equilibrium point xe of
f (x) is said to be vibrationally stabilizable (v-stabilizable) if for
any v > 0 there exists almost periodic and zero-mean g( t

ε
, x)

in the first argument such that system (4) has an almost periodic
asymptotically stable solution xs(t) characterized by

|x̄s − xe| < v,

where x̄s = limT→∞
1
T

∫ T
0 xs(τ )dτ .

As a special case, linear multiplicative vibrational systems in
Bellman et al. (1985) characterize a class of linear systems stabi-
lized by a linear vibrational control input:

ẋ = Ax +
1
ε
B1

(
t
ε

)
x, x(t0) = x0 ∈ Rn, (5)

where the matrix A ∈ Rn×n and the vibrational matrix B1 :

[t0,∞) → Rn×n is continuous and periodic in t with zero mean
value (see inverted pendulum (2) for example). The positive num-
ber ε serves as the design parameter that is related to the dither
frequency.

Lemma 1 provides a necessary and sufficient condition of vibra-
tional stabilization for linear multiplicative systems.

Lemma 1 (Meerkov, 1980). Suppose the matrix A in system (5) has
a controllable canonical form, then the system is v-stabilizable if and
only if the trace of the matrix A is negative.

Remark 1. As the trace of a squarematrix equals the summation of
all its eigenvalues, Lemma 1 implies that there may exist positive
eigenvalues such that the system (5) is open-loop unstable . By in-
troducing a high frequency vibration, it is possible to shift unstable
eigenvalues to stable ones. ◦

2.2. Input-to-state stability

While there exist disturbances in a dynamic system, input-to-
state stability (ISS) (Khalil, 1996) is used to address the robustness.
We consider the following time-varying system:

ẋ = f (t, x, w) , x(t0) = x0 ∈ Rn,∀t ≥ t0 ≥ 0, (6)

where f : [t0,∞) × Rn
× Rm

→ Rn is continuous differen-
tiable in t and locally Lipschitz in x and w. The disturbance w :

[t0,∞) → Rm is time-varying. Without losing generality, let us
assume f (t, 0, 0) = 0.
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