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a b s t r a c t

In this paper we formulate a solution of the robust linear regression problem in a general framework
of correntropy maximization. Our formulation yields a unified class of estimators which includes the
Gaussian and Laplacian kernel-based correntropy estimators as special cases. An analysis of the robustness
properties is then provided. The analysis includes a quantitative characterization of the informativity
degree of the regression which is appropriate for studying the stability of the estimator. Using this tool,
a sufficient condition is expressed under which the parametric estimation error is shown to be bounded.
Explicit expression of the bound is given and discussion on its numerical computation is supplied. For
illustration purpose, two special cases are numerically studied.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Given a set of empirical observations generated by a system
along with a class of parameterized candidate models, a pa-
rameter estimator is a function which maps the available data
to the parameter space associated with the model class. A very
desirable property for an estimator is that of robustness which
characterizes a relative insensitivity of the estimator to deviations
of the observed data from the assumed model. More specifically,
this property is central in situations where the data are prone to
non Gaussian noise or disturbances of possibly arbitrarily large
amplitude (often called outliers). The quest for robust estima-
tors has led to the development of many estimators such as the
Least Absolute Deviation (LAD) (Bako & Ohlsson, 2016; Candès
& Randall, 2006; Maronna, Martin, & Yohai, 2006; Rousseeuw &
Leroy, 2005), the least median of squares (Rousseeuw, 1984), the
least trimmed squares (Rousseeuw & Leroy, 2005), the class of
M-estimators (Huber & Ronchetti, 2009). Evaluating formally to
what extent a given estimator is robust requires setting a quan-
titative measure of robustness. Incidentally such a measure can
serve as comparison criterion between different robust estimators.
Generally, the robustness is assessed in term of the maximum
proportion of outliers in the total data set that the estimator can
handle while remaining stable (see for example the concept of
breakdown point (Rousseeuw & Leroy, 2005)). More recently the
maximum correntropy (Liu, Pokharel, & Principe, 2007; Principe,
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2010; Santamaria, Pokharel, & Principe, 2006) has emerged as an
information-theoretic estimation framework which induces some
robustness propertieswith respect to outliers. Althoughmaximum
correntropy estimation is closely related to M-estimation, its dis-
covery has broadened the horizon of possibilities for designing
robust identification schemes. As a matter of fact, it has been
successfully applied to a variety of estimation problems such as
linear/nonlinear regression, filtering, face recognition in computer
vision (Chen, Xing, Liang, Zheng, & Principe, 2014; Feng, Huang,
Shi, Yang, & Suykens, 2015; He, Zheng, & Hu, 2011).

Contribution. Although the maximum correntropy based estima-
tors have been gaining an increasing success, the formal analysis of
its robustness properties is still a largely open research question. In
this paperwe propose such an analysis for a class ofmaximum cor-
rentropy based estimators applying to linear regression problems.
More precisely, the contribution of the current paper is articulated
around the following three questions:

• To what extent the maximum correntropy estimation
framework is robust to outliers? By robustness, it is meant
here a certain insensitivity of the estimator to large errors of
possibly arbitrarily large magnitude. To address this ques-
tion, we derive parametric estimation error bounds induced
by the estimator in function of both the degree of richness
of the regression data and on the fraction of outliers. In
summary, we show that if the regression data enjoy some
richness properties and if the number of outliers is reason-
ably small, then the parametric estimation error remains
stable. Indeed the proportion of outliers that the estimator is
capable to correct depends on how rich the regressormatrix
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is. Moreover, the estimation error appears to be a decreasing
function of the richness measure.

• How does richness of the training data set influence the
robustness of the estimator and how to characterize it? We
provide an appropriate characterization of the richness in
terms of the cardinality of the regressor vectors which are
strongly correlated to any vector of the regression space. As
such however, this quantitative measure of richness is not
computable at an affordable price. To alleviate this difficulty
the paper proposes some estimates of this measure thus
allowing for the approximation of the parametric estimation
error bounds.

• Does the maximum correntropy estimator (MCE) possess
the exact recovery property? We show that unlike the LAD
estimator, the MCE is not able to return exactly the true
parameter vector once the measurement is affected by a
single arbitrary nonzero error. The proof is given for the
Gaussian kernel based estimator.

We note that an analysis of robustness of the maximum corren-
tropy has been presented recently in Chen, Liu, Zhao, Zheng, and
Principe (in press) and Chen, Xing, Zhao, Xu, and Principe (2017).
However the analysis there is limited to the Gaussian kernel based
correntropy and to a single parameter estimation problem. More-
over these works do not make clear how the properties of the data
contribute to the robustness of the estimator.

Outline. The remainder of this paper is organized as follows.
Section 2 presents the robust regression problem and define the
class of maximum correntropy estimators whose properties are
to be studied in the paper. It also introduces the general setting
of the paper. The main analysis results are developed in Section
3. In Section 4 we run numerical experiments to illustrate the
richness measure and the evolution of the derived error bounds
with respect to the amount of noise. Finally, Section 5 contains
concluding remarks concerning this work.

Notations. R is the set of real numbers; R+ is the set of real
nonnegative numbers; N is the set of natural integers; C denotes
the set of complex numbers. N will denote the number of data
points and I = {1, . . . ,N} the associated index set. For any finite
set S , |S| refers to the cardinality of S . However, whenever x is a
real (respectively complex) number, |x| will refer to the absolute
value (respectively modulus) of x. For x = [x1 · · · xn]⊤ ∈ Rn,
∥x∥p will denote the p-norm of x defined by ∥x∥p = (|x1|p + · · · +

|xn|p)1/p, for p ∈ {1, 2}, ∥x∥∞ = maxi=1,...,n |xi|. The exponential
of a real number z will be denoted exp(z) or ez according to visual
convenience; ln(z) is the natural logarithm function. For a square
and positive semi-definite matrix A, λmin(A) and λmax(A) denote,
respectively, the minimal and maximal eigenvalues of A.

2. Robust regression problem

2.1. The data-generating system

Let {xt}t∈N and {yt}t∈N be some stochastic processes taking
values, respectively, in Rn and R. They are assumed to be related
by an equation of the form

yt = x⊤

t θ o
+ vt , (1)

where {vt}t∈N represent an unobserved error sequence; θ o
∈ Rn is

an unknown parameter vector. Eq. (1) may describe a static (mem-
oryless) system or a dynamic one. In the latter case, we will conve-
niently assume that the so-called regressor (or explanatory vector)
xt has the following structure xt = [ut ut−1 · · · ut−(n−1)]

⊤,
i.e., (1) is an FIR-type (Finite Impulse Response) system, with ut
then denoting its input signal at time t .

Assumption 1. The joint stochastic process {(xt , vt )}t∈N is inde-
pendently and identically distributed.

While this assumption can hold naturally for a static system, it
might not be satisfied in some practical situations. For example, if
(1) is a dynamic system (for instance, of FIR-type), this assumption
is not satisfied.1 But as will be seen, its only role is to highlight the
correntropic origin of the estimation framework considered in this
paper.

Assumption 2. The noise sequence {vt} satisfies the following:
there is ε ≥ 0 such that if we define the index sets I0ε =

{t : |vt | ≤ ε} and Icε = {t : |vt | > ε}, then the cardinality of
⏐⏐I0ε ⏐⏐ is

‘‘much larger’’ than that of
⏐⏐Icε ⏐⏐.

We will formalize latter in the paper what ‘‘much larger’’ can
mean. Similarly as in Bako and Ohlsson (2016), we can assume
that vt is of the form vt = ft + et where {ft} is a sparse noise
sequence in the sense that only a few elements of it are different
from zero. However its nonzero elements are allowed to take on
arbitrarily large values (called in this case, outliers). As to {et}, it is
assumed to be a bounded and dense (i.e., not necessarily sparse)
noise sequence of rather moderate amplitude.

Problem. Given a finite collection ZN
= {(xt , yt )}Nt=1 of mea-

surements obeying the system equation (1), the robust regression
problem of interest here is the one of finding a reliable estimate of
the parameter vector θ o despite the effect of arbitrarily large errors.

Let θ denote a candidate parameter vector (PV)whichwewould
like, ideally, to coincide with the true PV θ o. Given xt and θ , the
prediction we can make of yt is ŷt (θ ) = x⊤

t θ . It is then the goal of
the estimation method to select θ such that yt and ŷt (θ ) are close
in some sense for any t . Closeness will be measured in term of the
so-called maximum correntropy between the measured output yt
and the predicted value ŷt (θ ).

2.2. Maximum correntropy estimation

The correntropy is an information-theoretic measure of simi-
larity between two arbitrary random variables (Liu et al., 2007;
Santamaria et al., 2006). More specifically, consider two random
variables Y and Ŷ defined on the sameprobability space, and taking
values in R. Let φℓ : R × R → R be a positive-definite kernel
function on R (see e.g., Schölkopf and Smola (2002, Chap. 2, p. 30)
for a definition). The correntropy Vφℓ

(Y , Ŷ ) between Y and Ŷ with
respect to a kernel function φℓ, is defined by

Vφℓ
(Y , Ŷ ) = EY ,Ŷ

[
φℓ(Y , Ŷ )

]
,

whereEY ,Ŷ [·] refers to the expected value with respect to the joint
distribution of (Y , Ŷ ). In a more explicit form, we have

Vφℓ
(Y , Ŷ ) =

∫
R

∫
R

φℓ(y, ŷ)pY ,Ŷ (y, ŷ)dydŷ (2)

with pY ,Ŷ being the joint probability density function of (Y , Ŷ ).
The correntropy constitutes a similarity measure between Y and
Ŷ through the kernel φℓ. Although the original definition of cor-
rentropy in Santamaria et al. (2006) fixes φℓ to be the Gaussian
kernel, it is indeed possible to extend it to any positive definite
kernel function.

We consider in this paper a kernel function of the form

φℓ(y, ŷ) = exp(−γ ℓ(y − ŷ)), (3)

where γ > 0 is a user-specified parameter and ℓ : R → R+ is a
function which satisfies the following properties:

1 Indeed this assumption can be relaxed to an appropriate notion of stationarity
and ergodicity for the joint process {(xt , vt )}.
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