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a b s t r a c t

A class of nonlinear uncertain mechanical systems with the Coriolis term, is considered. Since these
systems generally do not satisfy the bounded-input-bounded-state property, a global sliding-mode
observer with theoretically exact finite-time convergence using dissipative properties, is proposed.
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1. Introduction

The control ofmechanical systems requires information of both
variables: position and velocity. Since usually only the position is
measured, it is necessary to estimate the velocity by means of an
observer. When the model of the system is nonlinear, the param-
eters and the inputs of the system are well known there is an ex-
tensive literature providing global and asymptotically converging
velocity estimation, see e.g. Astolfi, Ortega, and Venkatra-
man (2010), Besançon (2000, 2007) and Gauthier, Hammouri,
and Othman (1992). However, in the presence of uncertain-
ties/perturbations (U/P) (e.g. dry friction, unknown torque, etc.) the
challenge of estimating globally, exactly the value of the velocity
becomes more difficult even more if finite-time convergence is re-
quired. If the perturbation in the system is arbitrary, the unknown
input observer theory (Hautus, 1983; Rocha-Cózatl & Moreno,
2004, 2011) requires relative degree one of the measured output
with respect to (w.r.t.) the perturbation, but mechanical systems
with U/P have relative degree two w.r.t. the measured position. To
allow the estimation of the velocity in this paper we assume that
the uncertainties/perturbations are bounded.

✩ The material in this paper was partially presented at 10th IFAC Symposium
on Nonlinear Control Systems, August 23-25, 2016, Monterey, California, USA. This
paperwas recommended for publication in revised formby Associate Editor Nathan
van de Wouw under the direction of Editor Daniel Liberzon.
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For this purpose a discontinuous estimation algorithm is re-
quired, such as sliding-mode observers (Barbot, Boukhobza, &
Djemai, 2003; Edwards, Spurgeon, & Tan, 2002; Spurgeon, 2008).
One of their advantages is that they provide theoretically exact
convergence to the true system’s states, even in the presence of
bounded perturbations and under the condition that the nonlinear
system has a Bounded-Input-Bounded-State (BIBS) property w.r.t.
the perturbations. Moreover, HOSM observers (Barbot & Floquet,
2010; Bejarano, Pisano, & Usai, 2011; Efimov, Zolghadri, Cieslak, &
Henry, 2012; Fridman, Shtessel, Edwards, & Yan, 2008; Pisano &
Usai, 2011) ensure this convergence in finite time.

In particular, for nonlinear mechanical systems with bounded
U/P the sliding-mode observers/differentiators (Davila, Fridman, &
Levant, 2005; Levant, 1998; Moreno, 2009; Xian, de Queiroz, Daw-
son, & McIntyre, 2004) require the system to be BIBS. To overcome
this restriction Apaza-Perez, Fridman, andMoreno (2017) propose
a strategy connecting two observers in cascade: (i) A Luenberger
observer ensuring that the estimation error converges to a neigh-
borhood of zero; (ii) A higher-order sliding mode differentiator
guarantees global finite-time theoretically exact convergence to
zero of estimation error. However, this design strategy grows twice
the order of observer, and requires restrictive conditions for gains
design. These restrictive conditions were partially overcoming
in Apaza-Perez, Moreno, and Fridman (2016).

For observation of nonlinear systems that do not necessarily
have the BIBS property, a dissipative approach (Moreno, 2004,
2005) for systems with known inputs, and in Rocha-Cózatl and
Moreno (2004, 2011) with the presence of U/P, results to be ef-
ficient. This technique contains as particular cases well-known
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observer design methods, as e.g. Lipschitz (Rajamani, 1998) and
high gain observers (Gauthier et al., 1992). For systems with U/P
satisfying the conditions for existence of an observer, among them
the relative degree one condition, the dissipative observer is able to
estimate globally and exponentially the true states (Rocha-Cózatl
& Moreno, 2004, 2011). But, when the relative degree condition is
not met but the U/P are bounded the dissipative observer assures
the convergence to a neighborhood of the origin of the estimation
error (Moreno, 2005).

Summarizing, one can conclude that observer design for me-
chanical systemswith U/P has the following difficulties: (i) relative
degree two w.r.t. U/P; (ii) the system could be not BIBS, i.e. the
sliding-mode differentiators cannot be used directly; (iii) the Cori-
olis termdepending quadratically on the velocity; (iv) there are un-
certainties on the parameters of model, e.g. dry friction, hysteresis,
etc.; (v) the system can be affected by external perturbations.
Main contribution. We consider one-degree-of-freedom mechan-
ical systems with Coriolis term, dry friction, bounded uncertain-
ties/perturbations and other nonlinearities. These systems do not
require to have the BIBS property. For this class of systems, a
global sliding-mode observer estimating the velocity theoretically
exactly in finite time, is proposed.

The rest of the paper is organized as follows. Section 2 contains
a motivating example of the system class for which sliding-mode
differentiators cannot ensure finite-time estimation. The problem
statement is presented in Section 3. Section 4 presents a state
transformation, to deal with the Coriolis term, and the proposed
observer. The main results are presented in Section 5. Section 6
illustrates the main results with computer simulations. Section 7
provides some conclusions. All proofs are located in Appendix.
Notations. Throughout this paper we avail of the following nota-
tions: ⌈·⌋

p
:= |·|

psign(·); λM (D) and λm(D) are the largest and the
smallest eigenvalue of a square matrix D.

2. Motivation example

The following Lagrangian system was considered by Besançon
(2000)

(1 + cos2(q))q̈ −
1
2
sin(2q)q̇2 + g sin(q) = τ ,

where q ∈ R is the position, (1 + cos2(q)) is the inertial term,
−

1
2 sin(2q)q̇2 is the Coriolis force. Consider a more general system

adding a continuous nonlinear term −
sin2(q)+1

3 q̇, a discontinuous
term (e.g. dry friction) 0.5 sign(q̇) and a bounded perturbation δ̃(t)
in the form:

(1+cos2(q))q̈ −
1
2
sin(2q)q̇2+

+ g sin(q) −
sin2(q) + 1

3
q̇ + 0.5 sign(q̇) = τ + δ̃(t). (1)

This system has relative degree two w.r.t. the measured output q
and the perturbation δ̃(t).

Let us apply the generalized super-twisting (GST) algo-
rithm (Moreno, 2011) as an observer to estimate the unmeasured
variable in finite time

ż1 = −6.7⌈e1⌋1/2 − 3.4⌈e1⌋ + z2, (2)

ż2 = −20⌈e1⌋0 − 33⌈e1⌋1/2 − 11⌈e1⌋,

where e1 = z1 − q and the gains are obtained according to its
methodology.
For the simulations, consider the perturbation in the form

δ̃(t) = 0.4 sin(3t) cos(4t3) + 0.5 cos(π t) + 0.6, (3a)

Fig. 1. (a) The estimation state z2 of differentiator (2) and the true state q̇ of (1). (b)
The estimation error z2 − q̇. (c) Nonlinearity and the perturbation ρ + δ̃ overcome
the gain 20.

τ = 0 and the initial conditions as

(q(0), q̇(0)) = (1, 1), (z1(0), z2(0)) = (−20,−20), (3b)

Fig. 1:(a) illustrates that trajectories of system (1) with initial
condition (3b) are not bounded. Fig. 1:(a)–(b) illustrate that the
differentiator state (2) converges at t = 1.65 [s] to the true state q̇,
but after t = 10.2 [s] the differentiator (2) loses convergence. This
is because at this time the nonlinearity

ρ(q, q̇) =
sin2(q) + 1

3(1 + cos2(q))
q̇ +

sin(2q)
2(1 + cos2(q))

q̇2

−
9.8 sin(q) + 0.5 sign(q̇)

1 + cos2(q)

with the unknown input δ̃(t) exceeds the value 20 corresponding
to the gain of the discontinuous term in the differentiator (2), see
Fig. 1:(c).

From this example one can conclude that for mechanical sys-
tems with U/P and without BIBS property, the observer conver-
gence is lost even if the GST algorithm based differentiator is
applied. Hence, it is necessary to design an observer for systems
not possessing BIBS property.

3. Problem statement

Consider one-degree-of-freedommechanical systems with un-
certainties/perturbations given as

m(q)q̈ + c(q)q̇2 + H(q, q̇) + η · sign(q̇) + g(q) = τ + δ̃(t, q, q̇) (4)

where q ∈ R is the (measured) generalized position, q̇ is the
generalized velocity;m(q) is the inertia term; c(q)q̇2 is Coriolis and
centrifugal force; H(q, q̇) is a continuous nonlinearity (e.g. contin-
uous frictions, air resistance, etc.); η ∈ R and η · sign(q̇) is the
dry friction, which possibly contains relay terms depending on q̇,
g(q) denotes gravitational forces; δ̃(t, q, q̇) containsU/P and τ is the
measured torque.

Suppose that the family of one-degree-of-freedom mechanical
systemswith uncertainties/perturbations represented by (4) satis-
fies the following assumptions:

A1. The inertia termm(q) satisfies

∃ a1, a2 > 0 ; ∀q, a1 ≤ m(q) ≤ a2, (5)
ṁ(q) = 2c(q)q̇. (6)
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