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a b s t r a c t

An architecture of a control system with additive faults is given, with a controller consisting of three
blocks, and aproblemof fault-tolerant (FT) perfect tracking is formulated. It is shown that there is a passive
FT controller such that its performance is notworse than the performance of the nominal controller, while
in presence of faults, it practically rejects the faults, on expense of a big magnitude of the control in times
when faults appear. A numerical simulation is given.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important control problems for systems with
faults is to find a controller such that the behavior of the closed
loop system is tolerant to faults. We call nominal controller the
controller designed under the absence of faults. The main require-
ment for the FT controller is that the performance of this controller
at least approximates the performance of the nominal controller
in times when the faults are absent (see item (2) on page 1616
of Zhou & Ren, 2001). Indeed, since the faults happen rarely, we
do not want to lose the nominal performance (the performance of
the closed-loop system with applied nominal controller) in times
when there are no faults. However, when faults appear, for safety
reasons,we allow aworse than nominal performance (for example,
more spent energy), while retaining some basic system properties
(for example, stability).

The problemof FT control can be solved using active and passive
controllers (see a comparison of passive versus active FT control,
page 347 of Blanke, Kinnaert, Lunze, & Staroswiecki, 2016). Ac-
tive controllers are reconfigurable ones, with the reconfiguration
made on the basis of the information obtained from a fault de-
tector/estimator. Passive controllers are not reconfigurable, they
are designed under the criterion of a pre-defined performance and
a pre-defined insensitivity to faults, of the closed loop system.
Before we proceed with the literature review, we explain the used
notation.

Remarks on the notation. The matrices are denoted by upper-
case letters, and vectors and scalars are denoted by lower-case
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letters. All functions of s are real rational, will be bold-faced, and if
not ambiguous, without the argument. The abbreviations RM and
FT mean rational matrix and fault-tolerant. The poles and zeros
(including poles and zeros at infinity) of a RM are defined through
its McMillan form. If a RM is without poles in ℜ[s] ≥ 0 (the
closed right complex half-plane), then we say that it is stable. By[

A B
C D

]
we denote the transfer matrix D + C(sI − A)−1B. By Tyr

we denote the transfer matrix from r to y.
Drawbacks of the active FT controllers are that they are com-

plex, that they require a certain time for fault detection/estimation
before another controller is computed and applied, and that the
variables (outputs and state) are not smooth in time (see Section
9.5 of Blanke et al., 2016).

There are different FT controller architectures in the literature,
(Ding, Yang, Zhang, Ding, Jeinsch, Weinhold, & Schulalbers, 2010;
Lan& Patton, 2016; Stoustrup&Niemann, 2001; Zhou&Ren, 2001)
and Section 15 of Ding (2013). All of them are based on a residual
generator included in the control loop. It is known that, even the
passive controllers include (implicitly) a residual generator (see
Fig. 6 in Ding et al., 2010).

Our controller will be a passive one. The performance will be
perfect tracking with a minimal norm of the control. We shall
use some ideas of the existing theory of tracking with disturbance
rejection, in the construction of the controller. The existing works
can be grouped in two global groups: The first one elaborates on
the class of plants and inputs in which ideal tracking and ideal
disturbance rejection is achievable, i.e. the tracking error tends to
zero when t → ∞, for all assumed inputs (Chen, Lin, & Liu, 2002;
Stefanovski, 2007; Willems & Mareels, 2004, Chapter 13 of Saberi,
Stoorvogel, & Sannuti, 2000, and Section VII of Wolovich, 1974).

The second group elaborates on the plants and/or inputs in
which the ideal behavior is not achievable. The authors set some
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Fig. 1. Control system architecture.

analytic criteria (for a distance to the ideal performance), andmin-
imize the criteria (Cirka, Fikar, & Mikle, 2005; Hoover, Longchamp,
& Rosenthal, 2004; Leva & Bascetta, 2007; Tsai, Yang, & Chen, 2014;
Wang, Guan, & Yuan, 2011; Xie, Xue, & Shiu Kit Tso, 2000).

The first group is closer to our work, therefore we give more
details. There are at least three classes of plants and inputs of ideal
tracking with disturbance rejection:

(1) Themost restrictive one (in respect to the class of inputs, but
the most general in respect to the class of plants) requires a strong
condition, that Q̄−1r is a proper stable rational vector, where G =

Q̄−1P̄ is a left coprime factorization of the plant transfer matrix G ,
and r is the Laplace transform of the assumed shape-deterministic
reference signal input r(t) (see Stefanovski, 2007, Xie et al., 2000
and references therein). An analogous condition holds for the ideal
disturbance rejection.

(2) Another class pre-assumes a model of the inputs (see The-
orem 2.4.1 in Saberi et al., 2000, the so called internal model
principle). The tracking and disturbance rejection is ideal under a
necessary and sufficient condition that is satisfied generically if the
plant transfer matrix G is right-invertible. A drawback is that if the
model changes in time, i.e. when different reference or disturbance
inputs are applied in real time, or if the model of the plant is not
precise, or changes in time, then the tracking with disturbance
rejection can be unsatisfactory.

(3) The perfect tracking (see Chen et al., 2002 and references
therein) is feasible under the right-invertibility of the plant transfer
matrix G and that it has no zeros inℜ[s] ≥ 0 and infinity. The exact
disturbance decoupling is feasible under very restrictive conditions
on the disturbance dynamics of the plant (see Theorems 13.2.1 and
13.2.2 of Saberi et al., 2000). Although the elaborated conditions
on the plant are most restrictive, there are no constraints on the
inputs.

In this paper we adopt a performance criterion that is most
close to the latter one. We find a passive FT controller such that
the output perfectly tracks the given reference input, and is practi-
cally insensitive to faults. When the faults have magnitudes much
greater than the magnitudes of the reference signal and the initial
values, the output is still insensitive to the faults, but on expense
of a big magnitude of the control. Unlike the strong conditions in
Theorem 13.2.1 of Saberi et al. (2000), we require only that the
RM Gf has no zeros on the extended imaginary axis. Finally, our FT
controller meets the requirement of Zhou and Ren (2001), stated
in the first paragraph of this paper.

2. Main result

Consider a linear time-invariant plant with the following in-
puts and output: f (t) is mf-dimensional input called fault, u(t) is

m-dimensional input called control, and y(t) is p-dimensional out-
put called measurement. Denote by f (s), u(s) and y(s) the Laplace
transforms of f (t), u(t) and y(t). We consider the system archi-
tecture given in Fig. 1, where the plant is given by the RMs G
and Gf, and X1, X2 and Kv are unknown RMs, which constitute the
controller. We take that Kv has mf rows. Denote by e = y − r the
tracking error. Introducfe a controlled variable z by z =

[
e

βu

]
, for

some weighting design parameter β > 0. We pose the following
problem.

Problem 1. Find a controller for the system given in Fig. 1 such
that

(1) the system is stable,
(2) Tyr = Ip,
(3) ∥Tur∥∞ is minimal, and
(4) ∥Tzf∥∞ is minimal.

By X1 we satisfy the requirements (2) and (3) of Problem 1, and
by X2 and Kv we satisfy the requirements (1) and (4).

Remark. The block-scheme in Fig. 1 coincides with the block-
scheme in Fig. 15.6 ofDing (2013) (The feedforward controllerK1 in
Ding, 2013 coincides with X1, and feedback controller K2 coincides
withX2Kv). The contribution of this paper in respect to Ding (2013)
is a detailed design of the blocks to satisfy the requirements in
Problem 1, with arbitrary small ∥Tef∥∞. By considering that Kv has
mf rows, we pre-determine that X2Kv is not a full rank RM, at least
in the most frequent case thatmf < min(m, p).

Consider the following system state-space model:

ẋ = Ax + Bu + Bff , x(0) = x0 ∈ Rn ,

y = Cx + Du + Dff .
(1)

Then the plant transfer matrices G and Gf are

[G,G f] =

[
A B Bf

C D Df

]
.

It is easy to see that the following assumption is necessary for
Problem 1.

Assumption 1. (1) The pair (C, A) is detectable, the pair (A, B) is
stabilizable, and (2) the RM G is right-invertible and has no zeros
in ℜ[s] ≥ 0 and infinity.

We have

y = Gu + Gff , (2)

u = X1r + X2v , (3)

v = Kv(y − r) . (4)

Define the RM M by

M = [M1, M2] = [Ip, M2]

=

[
A BM1 BM2

C DM1 DM2

]
=

[
A 0 BM2

C Ip DM2

]
,

where the matrices BM2 and DM2 are left arbitrary, temporarily. Let
X be a proper stable RM that satisfies GX = M . Introduce the
following partitions of X , compatible to that ofM: X = [X1, X2].

With respect to (2)–(4), we have y = Tyrr + Tyff , where

Tyr = (I − GX2Kv)−1(GX1 − GX2Kv) , (5)

Tyf = (I − GX2Kv)−1Gf ,
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