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a b s t r a c t

In this note, the stability of an uncertain system with actuator saturation using super-twisting controller
(STC) is analysed. First, a new proof of STC ensuring finite-time stability of the system is proposed using
geometric method which gives a new gain conditions. Then, using the proposed proof the domain of
attraction (DOA) is explicitly calculated for the system with bounded control.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding mode control (SMC) is popularly used for stabilizing the
uncertain dynamical systems by a discontinuous control (Utkin,
1977). However, the discontinuous control signal causes wear and
tear of the actuator. In the early nineties, a continuous SMC, known
as super-twisting control (STC), is proposed that also ensures a
sliding mode in finite-time. This control structure is given by

u(t) = −K |s(t)|
1
2 sign(s(t)) −

∫ t

0
L sign(s(τ )) dτ (1)

that stabilizes an uncertain scalar dynamical system

ṡ(t) = a(t) + b(t)u(t) (2)

in finite-time, where a(t) and b(t) are unknown but continuously
differentiable scalar functions, and K and L are some positive
constants. The control law (1) is studied widely in literature (e.g.,
Moreno & Osorio, 2012; Mu & Sun, 2015; Levant, 1993; Levant,
1998; Polyakov & Poznyak, 2009; Utkin, 2013; Utkin, 2016) due
to its ability to reject the disturbance completely with continuous
control signal. Similarly, the multi-input case is also reported in
Nagesh and Edwards (2014). Despite of the continuous control, STC
may result in a high amplitude oscillations of state trajectory in
certain cases (Utkin, 2016). Nevertheless, STC is still considered as
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an alternative approach to design a continuous SMC. The solutions
of the system are absolutely continuous functions that satisfy (2)
almost everywhere, and are understood in the Filippov’s sense on
discontinuous manifold (Filippov, 1988).

In this paper, the stability of the system is analysed using STC
with actuator saturation which is one of the major concerns in
many practical applications. First, a new geometric proof is pro-
posed to show the finite-time stability of STC which is different
from the existing ones, e.g., see (Levant, 1993; Moreno & Osorio,
2012; Mu & Sun, 2015; Polyakov & Poznyak, 2009; Utkin, 2013).
Themain advantage of this proposed proof is that here no difficulty
arises for the points on the line s = 0. The similar proof for
super-twisting observer is presented recently in Kumar, Behera,
and Bandyopadhyay (2017) but with a different gain conditions.
Then, using the proposed proof the domain of attraction (DOA)
is explicitly computed for the actuator saturation such that the
system is finite-time stable within this DOA. It is to be noted that
the stability of STC with saturating actuator is presented using
Lyapunov method in Castillo, Steinberger, Fridman, Moreno, and
Horn (2016). However, in this paper the stability of STC under
actuator saturation is analysed using the proposed geometric proof
with an aim of achieving the largest DOA.

The proposed proof follows the idea of constructing system
trajectories in the original coordinate instead of in the phase plane.
So, the difficulty incurred for the points on the line s = 0 is
avoided. Then, using this technique DOA is computed for any given
saturation limit.

2. Main results

First, we state some assumptions on the system (2) which hold
throughout this paper.
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Assumption 1. The function a and its rate are bounded, i.e., |a| < a
and |ȧ| ≤ A. The function b is bounded and sign definite, i.e., b ̸= 0,
and without loss of generality, 0 < b ≤ b ≤ b. Further, we also
assume |ḃ| ≤ B.

The STC given in (1) is rewritten as

u = −K |s|
1
2 sign(s) + L1L2v (3)

v̇ = −sign(s) (4)

where L = L1L2 for some positive constants L1 and L2. Here, the
gains L1 and L2 allow the flexibility in the design of L as we shall
see later. The closed loop system with the control law (3) and (4)
is given as

ṡ = b
(
−K |s|

1
2 sign(s) + L1µ

)
(5)

µ̇ = −L2sign(s) +
γ

L1
(6)

where µ = L2v +
1
L1
( ab ) and γ =

d
dt (

a
b ). It is easy to see that

|γ | ≤ Γ + where Γ +
=

Ab+Ba
b2

. The classical notions of solution
are not applicable since the system (5)–(6) is discontinuous for the
points on s = 0. So, the differential equation on the discontinuous
manifold is replaced by an inclusion which is nonempty, closed
and bounded, convex and upper semi-continuous in its argument.
Then, there exists an absolutely continuous function which satis-
fies the inclusion almost everywhere, and is regarded as a solution
to the system in the Filippov’s sense (Filippov, 1988).

2.1. Stability of super-twisting control

The following theorem gives the proof of STCwithout assuming
any bound on control which is used later for calculation of DOA.

Theorem 1. Consider the system (5) and (6). Then, the system is
finite-time stable if

K > 1.8

√ L1
(
L2 +

Γ +

L1

)
b

and L2 >
Γ +

L1
(7)

where L1 > 0.

Proof. The proof follows by the construction of geometrical trajec-
tories in each quadrant separately in (s, µ) plane. Note that every
solution of the system (5)–(6) satisfies Filippov’s inclusion for all
points on the line s = 0. The system trajectory leaves the line s = 0
whenever it crosses s = 0 for nonzero µ due to (5).

Define the curves Σ1 ≡ L1µ − K |s|
1
2 sign(s) = 0 and Σ2 ≡

L1µ+K |s|
1
2 sign(s) = 0 as shown in Fig. 1. Clearly, the curveΣ1 = 0

divides the (s, µ) plane into two parts namely Σ1 > 0 and Σ1 < 0
such that any trajectory in Σ1 > 0 crosses Σ1 = 0 before entering
Σ1 < 0 and vice versa. Similarly for Σ2 = 0.

We now proceed to find the trajectory of the system (5) and (6)
as shown in Fig. 1. Consider the first quadrant, s > 0 and µ > 0.
Any trajectory starting in the region Σ1 > 0 with initial condition
(0, µ(0)) is bounded by the line segment I due to L2 > Γ +

L1
. The

equation of segment I is governed by

ṡ > 0 and µ̇ = 0.

So, the line segment starting from the point (0, µ(0)) hits Σ1 =

0 at (s(t1), K |s(t1)|
1
2 /L1). Then, it enters the region Σ1 < 0

in the same quadrant. Similarly, all the trajectories in this re-
gion remain bounded by the line segment II which drops from
(s(t1), K |s(t1)|

1
2 /L1) to (s(t1), 0). This is because both ṡ < 0 and

µ̇ < 0 as Σ1 < 0 and L2 > Γ +

L1
, respectively.

Fig. 1. Majorant curve of STC in (s, µ) plane.

Then, the system trajectory enters into the fourth quadrant (s >

0 and µ < 0) where ṡ < 0 and µ̇ < 0. It is easy to see that in this
quadrant all the trajectories remain bounded by the segment III
which is governed by

ṡ = bmax
{
L1µ, −K |s|

1
2

}
and µ̇ = −

(
L2 +

Γ +

L1

)
.

Clearly, the dynamical equations of curve segment III until it
reaches the curve Σ2 = 0 are represented by ṡ = bL1µ and
µ̇ = −

(
L2 +

Γ +

L1

)
as Σ2 > 0 and s > 0, respectively. On solving

these two, the equation of motion of this segment is obtained as

µ2(t) =

2
(
L2 +

Γ +

L1

)
bL1

(s(t1) − s(t)) (8)

for all t ∈ [t1, t ′1] where t ′1 is the time instant at which the
trajectory reaches the curve Σ2 = 0. A simple calculation shows
that the segment of curve III intersects the curve Σ2 = 0 at
(s(t ′1), −K |s(t ′1)|

1
2 /L1) where

s(t ′1) =

2L1
(
L2 +

Γ +

L1

)
bK 2 + 2L1

(
L2 +

Γ +

L1

) s(t1).

Once the trajectory reaches Σ2 = 0, it moves towards the line
s = 0 due to both ṡ < 0 and µ̇ < 0. During this, the dynamics
of segment III is governed by

ṡ = −bK |s|
1
2 and µ̇ = −

(
L2 +

Γ +

L1

)
as Σ2 < 0. It is seen that with the above dynamical equations
the majorant curve now traverses from (s(t ′1), −K |s(t ′1)|

1
2 /L1) to

(0, µ(t2)) and is given as

µ(t) = µ(t ′1) −
2
bK

(
L2 +

Γ +

L1

)(
|s(t ′1)|

1
2 − |s(t)|

1
2

)
(9)

for all t ∈ [t ′1, t2].
This curve hits the line s = 0 in finite time with the intercept
µ(t2) < 0. Using the above relation, we compute the value of this
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