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a b s t r a c t

In this note, we consider the problem of computing the parameters (or weights) of an optimal control
objective function given optimal closed-loop state and control trajectories. We establish a method of
inverse optimal control that exploits the discrete-time minimum principle. Under a testable matrix rank
condition, our proposed method is guaranteed to recover the unknown objective-function parameters of
finite-horizon discrete-time nonlinear optimal control problems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of inverse optimal control arises in several areas of
study in science and engineering including robotics (Aghasadeghi
& Bretl, 2014; Aghasadeghi, Long, & Bretl, 2012; Hatz, Schlöder, &
Bock, 2012; Maillot, Serres, Gauthier, & Ajami, 2013; Mombaur,
Truong, & Laumond, 2010), and biomedical engineering (Priess,
Conway, Choi, Popovich, & Radcliffe, 2015). For example, inverse
optimal control has been applied successfully in the analysis of bi-
ological systems such as human locomotion (Aghasadeghi & Bretl,
2014;Hatz et al., 2012;Mombaur et al., 2010), human-posture con-
trol (Pauwels, Henrion, & Lasserre, 2014), and human-controlled
aircraft motion (Maillot et al., 2013). Despite its broad potential
applications, the theory of inverse optimal control in discrete-time
finite-horizon settings has received limited attention. In this note,
we develop a novel method of inverse optimal control for discrete-
time finite-horizon systems.

Inverse optimal control is the problem of determining the un-
known objective function (or alternatively the objective-function
parameters) of an optimal control problem from optimal state
and control trajectories (Hatz et al., 2012; Mombaur et al., 2010;
Priess et al., 2015). Most theoretical treatments of inverse optimal
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control reported in the literature have focused on the infinite-
horizon linear quadratic regulator (LQR) problem—see Boyd,
Ghaoui, Feron, and Balakrishnan (1994, Section 10.6), Priess et al.
(2015) and references therein. In this inverse LQRproblem, existing
approaches either assume knowledge of the optimal feedback gain
matrix (Boyd et al., 1994, Section 10.6), or first recover it from the
optimal state and control trajectories (Priess et al., 2015). With
knowledge of the optimal feedback gain matrix, the objective-
function parameters (i.e., weighting matrices) of the quadratic
objective function are found by solving linear matrix inequali-
ties (Boyd et al., 1994; Priess et al., 2015).

In order to solve finite-horizon inverse optimal control prob-
lems in general nonlinear continuous-time systems, Mombaur et
al. (2010) proposed a bilevel (or nested) optimisation approach.
This bilevel approach involves repeatedly solving optimal control
problems with candidate objective-function parameters as part of
a numeric optimisation. Due to its reliance on numeric optimi-
sation, there are no theoretical results characterising the perfor-
mance of this bilevel approach, and its computational expense is
significant (cf. Johnson, Aghasadeghi, and Bretl, 2013 and Mom-
baur et al., 2010).

Recently, methods of inverse optimal control for nonlinear sys-
tems that avoid repeatedly solving the optimal control problem
have been proposed on the basis of the Karush–Kuhn–Tucker
conditions in discrete-time (cf. Keshavarz, Wang, & Boyd, 2011;
Molloy, Tsai, Ford, & Perez, 2016; Panchea & Ramdani, 2015;
Puydupin-Jamin, Johnson, & Bretl, 2012), and Pontryagin’s min-
imum principle and the Hamilton–Jacobi–Bellman equation in
continuous-time (cf. Hatz et al., 2012; Johnson et al., 2013;
Pauwels et al., 2014). For continuous-time differentially flat
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systems, Aghasadeghi and Bretl (2014) established theoretical con-
ditions that guarantee the recovery of the unknown objective-
function parameters. However, there appear to be few, if any,
existing methods or theoretical results that guarantee the exact
recovery of the objective-function parameters in finite-horizon
discrete-time nonlinear inverse optimal control problems.

The main contribution of this note is the proposal of a method
of finite-horizon discrete-time inverse optimal control. Unlike pre-
vious approaches (e.g., Molloy et al., 2016), our method exploits
the discrete-time minimum principle and we are able to establish
conditions that guarantee the recovery of the objective-function
parameters. Furthermore, ourmethod generalises beyond the clas-
sical discrete-time LQR setting, and does not require reconstruc-
tion of the optimal control law or the solution of candidate optimal
control problems.

2. Problem formulation

Consider the deterministic discrete-time system

xk+1 = f (xk, uk) , x0 ∈ Rn (1)

for 0 ≤ k ≤ K − 1 where f (·, ·) : Rn
× Rm

↦→ Rn is a given
(possibly nonlinear) time-invariant function, xk ∈ Rn are state
vectors, and uk ∈ Uk are control inputs constrained to values in
the sets Uk ⊂ Rm. Let us define the objective function

VK
(
x0K , u0K−1, θ

)
≜ F (xK , θ) +

K−1∑
k=0

L (xk, uk, θ) ,

with parameters θ ≜ [θ1, θ2, . . . , θN ]
′

∈ Θ ⊂ RN . Here, we use
x0K ≜ {x0, x1, . . . , xK } and u0K−1 ≜ {u0, u1, . . . , uK−1} to denote
the state and control trajectories respectively. We assume that the
stage L (·, ·, ·) and terminal F (·, ·) objective functions are of the
form

L (xk, uk, θ) ≜

NL∑
i=1

θiLi (xk, uk) , (2)

and

F (xK , θ) ≜

N∑
j=NL+1

θjFj (xK ) (3)

where Li (·, ·) and Fj (·) are differentiable real-valued basis func-
tions for 1 ≤ i ≤ NL and NL < j ≤ N .

In the discrete-time finite-horizon optimal control problem, we
are given the basis functions Li (·, ·) for 1 ≤ i ≤ NL and Fj (·) for
NL < j ≤ N , the parameters θ , and the initial state x0, and we solve
the optimisation problem (Bertsekas, 1995):

inf
u0K−1

VK
(
x0K , u0K−1, θ

)
s.t. xk+1 = f (xk, uk), k = 0, 1, . . . , K − 1

uk ∈ Uk, k = 0, 1, . . . , K − 1.

(4)

In the inverse optimal control problem, we are given optimal
closed-loop state x∗

0K ≜
{
x∗

0, x
∗

1, . . . , x
∗

K

}
and control u∗

0K−1 ≜{
u∗

0, u
∗

1, . . . , u
∗

K−1

}
trajectories that solve the optimal control prob-

lem (4) with unknown parameters θ = θ∗
∈ Θ . Our aim is then

to recover the unknown parameters θ∗ from these optimal closed-
loop trajectories under the following assumption.

Assumption 1. The open-loop system dynamics f (·, ·), the con-
straint sets Uk, and the basis functions Li (·, ·) and Fj (·, ·) for 1 ≤

i ≤ NL and NL < j ≤ N are known and specify the optimal control
problem (4) with θ = θ∗.

In this note, we also consider the inverse optimal control prob-
lemwherewe are givenmultiple pairs of optimal closed-loop state
and control trajectories (with potentially different horizons and
initial states) that are optimal under (4) with θ = θ∗. We shall
let x∗,ℓ

0Kℓ
≜

{
x∗,ℓ
0 , x∗,ℓ

1 , . . . , x∗,ℓ
Kℓ

}
and u∗,ℓ

0Kℓ
≜

{
u∗,ℓ
0 , u∗,ℓ

1 , . . . , u∗,ℓ
Kℓ−1

}
denote the ℓth pair of optimal state and control trajectories with
horizon Kℓ for ℓ = 1, 2, . . . ,M . Finally, we note that the param-
eters θ∗ will only be recoverable up to an unknown scaling factor
0 < r < ∞ since if the trajectories x∗

0K and u∗

0K−1 are optimal under
(4) with θ = θ∗, then they are also optimal under (4) with θ = rθ∗

for all 0 < r < ∞.

3. Inverse optimal control

In this section, we propose a method of inverse optimal control
that exploits the discrete-time minimum principle of Bertsekas
(1995, Proposition 3.3.2).

3.1. Discrete-time minimum principle

In order to present the discrete-time minimum principle, let us
define the Hamiltonian associated with (4) for any θ ∈ Θ as the
function

H (xk, uk, λk, θ) ≜ L (xk, uk, θ) + λ′

kf (xk, uk) (5)

for 0 ≤ k ≤ K −1 where λk ∈ Rn are costate (or adjoint) variables.
Let us also define the column vectors of first-order partial deriva-
tives of H (xk, uk, λk, θ) with respect to xk and uk (and evaluated
at xk and uk) as ∇xH (xk, uk, λk, θ) ∈ Rn and ∇uH (xk, uk, λk, θ) ∈

Rm, respectively. We shall similarly use ∇xf (xk, uk) ∈ Rn×n and
∇uf (xk, uk) ∈ Rm×n to denote matrices containing the first-order
partial derivatives of f (xk, uk) with respect to xk and uk, respec-
tively.

The discrete-time minimum principle is established under the
following standard assumption on the convexity of the constraint
sets Uk (see Bertsekas, 1995, Section 3.3.3 for a discussion of this
assumption).

Assumption 2. The constraint sets Uk ⊂ Rm are convex for all
0 ≤ k ≤ K − 1.

Under Assumption 2, Proposition 3.3.2 of Bertsekas (1995)
states that if Assumption 1 holds so that x∗

0K and u∗

0K−1 are solutions
to the optimal control problem (4) for a given θ∗

∈ Θ , then
the trajectories x∗

0K and u∗

0K−1 satisfy (1), and there exist costate
variables λk ∈ Rn for 0 ≤ k ≤ K − 1 that satisfy the backwards
recursion

λk−1 = ∇xH
(
x∗

k, u
∗

k, λk, θ
∗
)

(6)

for 1 ≤ k ≤ K − 1 with the boundary condition

λK−1 = ∇xF
(
x∗

K , θ∗
)
. (7)

Furthermore, Proposition 3.3.2 of Bertsekas (1995) also establishes
that the controls u∗

k ∈ Uk satisfy the optimality condition

∇uH
(
x∗

k, u
∗

k, λk, θ
∗
)′ (uk − u∗

k

)
≥ 0 (8)

for all uk ∈ Uk and all 0 ≤ k ≤ K−1.We shall exploit the optimality
condition (8) to propose a method of inverse optimal control.

3.2. Proposed method

We require the following assumption to propose our method.

Assumption 3. The input u∗

k belongs to the interior (not the
boundary) of the constraint set Uk ⊂ Rm for all 0 ≤ k ≤ K − 1.
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