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a b s t r a c t

In this paper, the event-triggered consensus problem is studied for multi-agent systems with general
linear dynamics under a general directed graph. Based on state feedback, we propose a decentralized
event-triggered consensus controller (ETCC) for each agent to achieve consensus, without requiring
continuous communication among agents. Each agent only needs to monitor its own state continuously
to determine when to trigger an event and broadcast its states to its out-neighbors. The agent updates
its controller when it broadcasts its states to its out-neighbors or receives new information from its in-
neighbors. The ETCC can be implemented in multiple steps. it is proved that under the proposed ETCC
there is no Zeno behavior exhibited. To relax the requirement of continuous monitoring of each agent’s
own states, we further propose a self-triggered consensus controller (STCC). Simulation results are given
to illustrate the theoretical analysis and show the advantages of the event-triggered and self-triggered
controllers proposed in this paper.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, the consensus problem of continuous-time
multi-agent systems (MAS) has been attracting much attention
due to its wide applications. Many significant works have been
obtained, e.g., see Jadbabaie, Lin, and Morse (2013), Li, Duan,
Chen, and Huang (2010), Olfati-Saber, Fax, and Murray (2007),
Ren and Beard (2008), Xiao and Wang (2008), and Yu, Chen, and
Cao (2010), just to name a few. Note that in the above works
the agents need to continuously employ their own and neighbors’
states and hence these states need to be obtained continuously.
To avoid this disadvantage, some researchers has begun to study
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the centralized/distributed event-triggered consensus problem.
The event-triggered average-consensus problem was considered
for MAS with single-integrator dynamics in Dimarogonas and
Johansson (2009) and Fan, Feng, Wang, and Song (2013). The
event-triggered consensus problem for MAS with general linear
dynamics was investigated in Zhang, Feng, Yan, and Chen (2014).
Periodic event/self-triggered consensus for general linearMAS and
distributed convex optimization problembased on event-triggered
algorithms have been studied in Chen and Ren (2016) and Yang,
Ren, and Liu (2014). While the controllers in Dimarogonas and
Johansson (2009), Fan et al. (2013), and Zhang, Feng et al. (2014)
are often updated less by using the event-triggered algorithms
than using the time-triggered ones, they still require the agents to
communicate with their neighbors continuously.

It is well known that unnecessary communication can lead
to a waste of energy. Continuous communication would also
cause the communication resource competition among agents.
To remove the requirement for continuous communication and
hence reduce the communication cost, researchers have begun
to study the quantized consensus or the event-/self-triggered
consensus. For example, the event triggering idea was used to
solve the continuous-time quantized average consensus problem
in Ceragioli, Persis, and Frasca (2011) with the graph being

http://dx.doi.org/10.1016/j.automatica.2016.03.003
0005-1098/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2016.03.003
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.03.003&domain=pdf
mailto:yangdp1988@163.com
mailto:ren@ee.ucr.edu
mailto:xdliu@bit.edu.cn
mailto:wshchen@126.com
http://dx.doi.org/10.1016/j.automatica.2016.03.003


D. Yang et al. / Automatica 69 (2016) 242–249 243

weight-balanced and weakly-connected. Besides, periodic event-
triggered consensus algorithm was studied in Meng and Chen
(2013) for single-integrator agents over undirected connected
communication topologies. A self-triggered control algorithm
for single-integrator agents was given in Dimarogonas, Frazzoli,
and Johansson (2012). In Seyboth, Dimarogonas, and Johansson
(2013), a decentralized event-triggered consensus algorithm was
considered for single- anddouble- integrator agents. To remove the
requirement of global information or synchronous broadcasting as
in sampled-data approaches, Garcia et al. (2013) studied the event-
triggered control based on only local state errors. In addition, the
consensus problem of double-integrator MAS with intermittent
communications was investigated in Wen, Duan, Yu, and Chen
(2013). Note that during the disconnected communicating time
intervals, the communication is still continuous, but not discrete.
An event-triggered distributed consensus optimization algorithm
was proposed in Chen and Ren (2016). However, in Ceragioli
et al. (2011), Chen and Ren (2016), Dimarogonas et al. (2012),
Garcia et al. (2013), Meng and Chen (2013), Seyboth et al.
(2013), and Wen et al. (2013), the agents were assumed to
be with single- or double- integrator dynamics. For MAS with
general linear dynamics, Garcia, Cao, Giua, and Casbeer (2014),
Zhang, Feng et al. (2014), Zhang, Hao, Zhang, and Wang (2014),
and Zhu, Jiang, and Feng (2014) have recently considered the
event-triggered consensus problem. However, in Garcia et al.
(2014) and Zhu et al. (2014) the final consensus error could
only converge to a neighborhood of zero and Zhang, Feng et al.
(2014), Zhang, Hao et al. (2014), and Zhu et al. (2014) required
continuous communication of neighbors’ states to check the
triggering conditions. The communication topology in Zhang, Hao
et al. (2014) was assumed to be undirected. Also Seyboth et al.
(2013) only considered the event-triggered consensus for double-
integrator dynamics under undirected graphs. In short, the event-
triggered consensus problem with zero final consensus error for
general linear MAS without continuous communication under
directed graphs has not been addressed.

Motivated by the above discussion, we consider the consensus
problem for MAS with general linear dynamics under a general
directed graph based on an event-triggered broadcasting scheme
by expanding on our preliminary work reported in Yang et al.
(2014). The communication topology among the agents is assumed
to be a general directed graph containing a directed spanning
tree. With state feedback, we first propose a decentralized event-
triggered consensus controller (ETCC) implemented in multiple
steps for each agent to achieve consensus. Under our proposed
controller, there is no continuous communication required among
agents. We further prove that there is no Zeno behavior exhibited
during the control process, that is, the eventwould not be triggered
continuously. Note that if the Zeno behavior cannot be avoided,
then essentially continuous communication is required again. Note
that under the ETCC, each agent needs to monitor its own state
continuously. To relax this limitation, we further propose a self-
triggered consensus controller (STCC), where the next triggering
instant is preset by the agent itself at the previous triggering
instant. Here the stability analysis and the exclusion of the Zeno
behavior of the closed-loop systems are partly inspired by Li et al.
(2010) and Seyboth et al. (2013). However, due to the significant
challenges caused by the coupling of non-monotonically changing
measurement errors, general linear dynamics, and directed
communication topologies, the convergence of the consensus
errors and thenon-Zeno analysis aremore difficult thanbefore. The
primary contributions of the paper are summarized as follows.

(1) We solve the event-triggered/self-triggered consensus prob-
lem for multi-agent systems with general linear dynamics
under general directed graphs without the need for continu-
ous communication in either controller update or triggering

condition monitoring. In addition, our results guarantee zero
final consensus error. Most works in the existing literature
have some limitations such as agents’ dynamics, communica-
tion topologies, nonzero final consensus error, and continu-
ous communication. So, themethods proposed in the literature
cannot be directly used in our paper.

(2) By using the matrix exponential function eAt , a piecewise
continuous control input is designed in the proposed ETCC
to estimate the current states of the agents and solve the
dynamic consensus problem, where the final consensus states
can be time varying. In contrast, Dimarogonas et al. (2012), Fan
et al. (2013), and Meng and Chen (2013) adopted a piecewise
constant control input to solve the static consensus problem,
where the final consensus states are constant. Note that, for
single-integrator agents, the event-based controller can be
obtained directly from the traditional continuous consensus
controller. But to solve the dynamic consensus problem for
double-integrator or general linear agents, the continuous
controllers cannot be directly implemented in the event-
triggered form. Introducing the matrix exponential function
eAt in the controller design and the threshold function is an
innovative point of our research. The results in Seyboth et al.
(2013) dealing with single- and double-integrator dynamics
can be regarded a special case of our result. It is worth
mentioning that the analysis for convergence and exclusion
of the Zeno behavior in our framework is nontrivial and there
exist significant challenges.

The rest of this paper is organized as follows. Some useful results
and the dynamics are introduced in Section 2. The event-triggered
consensus is investigated in Section 3 and the self-triggered
scheme is discussed in Section 4. Simulation examples are given
in Section 5. Section 6 concludes the paper.

2. Preliminaries

2.1. Notation and graph theory

Let Rm×n and Cm×n be, respectively, the set of m × n real and
complex matrices. Let 1m and 0m denote, respectively, the m × 1
column vector of all ones and all zeros. Let 0m×n denote them × n
matrix with all zeros and Im denote them×m identity matrix. The
superscript T means the transpose for real matrices. We denote by
λi(·) the ith eigenvalue of a matrix. By diag(A1, . . . , An), we denote
a block-diagonal matrix with matrices Ai, i = 1, . . . , n, on its
diagonal. AmatrixA ∈ Cm×m is Hurwitz if all of its eigenvalues have
strictly negative real parts. Thematrix A⊗B denotes the Kronecker
product of matrices A and B. Let ∥ · ∥ denote, respectively, the
Euclidean norm for vectors and the induced 2-norm for matrices.
Let ∥·∥F denote the Frobenius normof amatrix. Let dim(·) describe
the dimension of a square matrix. For a complex number, Re(·)
denotes its real part.

A directed graph G is a pair (V, E), where V = {v1, . . . , vN} is
a nonempty finite set of nodes and E ⊆ V × V is a set of edges, in
which an edge is represented by an ordered pair of distinct nodes.
An edge (vi, vj) means that node vj can receive information from
node vi or equivalently node vi can broadcast information to node
vj. Here we call vi an in-neighbor of vj and vj an out-neighbor of vi.
A directed path from node vi1 to node vil is a sequence of ordered
edges of the form (vik , vik+1), k = 1, . . . , l − 1. A directed graph
contains a directed spanning tree if there exists a node called the
root such that there exist directed paths from this node to every
other node. The adjacency matrix A = [aij] ∈ RN×N associated
with the directed graph G is defined by aii = 0, aij > 0 if (vj, vi) ∈

E and aij = 0 otherwise. The Laplacian matrix L = [lij] ∈ RN×N

is defined as lii =
N

j=1,j≠i aij and lij = −aij, i ≠ j. The graph G is
undirected if aij = aji, ∀i, j = 1, . . . ,N and directed otherwise.
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