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a b s t r a c t

We investigate a nonlinear dynamical model of a human’s heart beat rate (HBR) during a treadmill
exercise. We begin with a rigorous analysis of the stability of the model that extends significantly
the results available in the literature. In particular, we first identify a simple set of necessary and
sufficient conditions for both input-state stability and Lyapunov stability of the system, and then prove
that the same conditions also hold when the model parameters are subject to unknown but bounded
perturbations. The second part of the paper is devoted to the design and analysis of a control structure for
this model, where the treadmill speed plays the role of the control input and the output is the subject’s
HBR, which is intended to follow a prescribed pattern. We propose a simple control scheme, suitable for
a practical implementation, and then analyze its performance. Specifically, we prove (i) that the same
conditions that guarantee the stability of the system also ensure that the controller attains a desired
level of performance (quantified in terms of the admissible deviation of the HBR from the prescribed
profile) and (ii) that the controller is robust to bounded perturbations both in the system parameters and
the control input. Numerical simulations are also presented in order to illustrate some of the theoretical
results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A subject’s heart beat rate (HBR) can vary as the body’s need to
absorb oxygen and excrete carbon dioxide changes, such as during
sleep, illness and, in particular, physical exercise. Because each
individual has a constant blood volume, one of the physiological
ways to deliver more oxygen to an organ is to increase the HBR to
make blood pass through the organ more often. These well known
biological facts, together with the availability of inexpensive
measurement equipment, have made HBR a widely used indicator
of exercise intensity.

Indeed, HBR monitoring helps physicians manage and control
exercise training intensity in order to ensure the subject’s
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safety during the practice. It is also common for physicians to
individualize HBR profiles by taking into account the physiological
state of the subject. Such practice clearly calls for appropriate
i.e., accurate, flexible and reliable models of the HBR. One of
the most promising such models was introduced in Cheng,
Savkin, Celler, Su, and Wang (2008), where a specific nonlinear
input–output relationship linking the HBR (output) and the
treadmill speed (input) is described. The model in Cheng, Savkin
and Celler et al. (2008) has two state variables. One represents the
deviation of the HBR from the subject’s beat rate when at rest,
while the second variables model internal peripheral effects.

The contributions in Cheng, Savkin and Celler et al. (2008)
include a controller to regulate the HBR, given a suitably defined
input signal related to an a priori prescribed HBR profile. This
control scheme, however, is based on a linear approximation of
the original nonlinear model. Moreover, the stability of the system
cannot be guaranteed in the presence of perturbations, either to
themodel parameters or to the input signal. Additional attempts to
design controllers based on the model of Cheng, Savkin and Celler
et al. (2008) can be found in Cheng, Savkin, Su, Celler, and Wang
(2008), Mazenc, Malisoff, and De Querioz (2011) and Patrascu,
Patrascu, and Hantiu (2014). However, only Mazenc et al. (2011)
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provides a control schemes based on the original nonlinear model
of Cheng, Savkin and Celler et al. (2008), rather than a linear
approximation.

In Mazenc et al. (2011) it is argued that, since the controller
only involves one out of five different parameters in the model,
the scheme is robust to parameter perturbations. However, the
sufficient conditions for the validity of the control method which
are derived in Mazenc et al. (2011) involve the HBR profile and
the exact parameter values. Unfortunately, parametermismatches,
even if slight, easily prevent these conditions from being satisfied
(as we specifically show in Section 4; see Remark 3). The computer
simulations in Mazenc et al. (2011) actually involve a very specific
choice of the parameter values (which guarantee stability).

While robust controllers for the HBR model of interest have
been proposed in the original paper Cheng, Savkin and Celler et al.
(2008) and its sequel Cheng, Savkin and Su et al. (2008), they are
based on the H∞ method and, therefore, rely on a linearization
of the original model. The scheme in Cheng, Savkin and Su et al.
(2008), in particular, is designed to cope with additive noise in
the linearized system, however themodel parameters are assumed
to be known exactly. To summarize, none of the control methods
proposed in Cheng, Savkin and Celler et al. (2008); Cheng, Savkin
and Su et al. (2008) andMazenc et al. (2011) is designed to account
for perturbations to the input signal and they require the model
parameters to be known either exactly (Cheng, Savkin and Celler
et al., 2008; Cheng, Savkin and Su et al., 2008) or with great
accuracy (Mazenc et al., 2011). The control scheme in Patrascu et al.
(2014) relies on a linear approximation of the system and it is only
evaluated through computer simulations, not analytically.

The contribution of this paper is twofold. We start with a
rigorous stability analysis of the nonlinear model of Cheng, Savkin
and Celler et al. (2008). The study of the system stability carried
out in Cheng, Savkin and Celler et al. (2008) revolves around the
implications of a certain bilinear matrix inequality (BMI) and it is
only valid for exact values of the parameters. By converting the
BMI into a linear matrix inequality (LMI), we extend the stability
analysis to handle intervals of values of the model parameters. To
be precise, we find necessary and sufficient conditions, which are
satisfied within a range of parameter values, for the model to be
Lyapunov stable and input-state stable (Lyapunov, 1966; Sontag
& Wang, 1995). We also prove that the same stability conditions
still hold when the model parameters are subject to unknown but
bounded perturbations, either deterministic or random.

The second contribution of the paper is the design and analysis
of a control scheme that adjusts the input signal (i.e., the
treadmill speed) to make the subject’s HBR follow the rate profile
prescribed by a physician. The structure of the controller is simple
enough for practical implementations. We quantify the controller
performance in terms of the admissible deviation of the HBR
from the prescribed profile and prove that the controlled system
is stable as long as the sufficient conditions for the stability of
the original model are satisfied.1 This implies, in particular, that
the control scheme is robust to bounded perturbations of the
model parameters and its implementation demands only that the
bounds for the variation of a single parameter are determined a
priori. Our approach overcomes the main limitations in Cheng,
Savkin and Celler et al. (2008); Cheng, Savkin and Su et al. (2008)
and Mazenc et al. (2011), namely the need to have an accurate
knowledge of the model parameters and the need to have a non-
perturbed input signal. It also enables the analysis of the original
nonlinear system in Cheng, Savkin and Celler et al. (2008) without
resorting to linearizations or other approximations.

1 The necessary and sufficient conditions for stability are nearly identical. They
are given in terms of two inequalities that differ at a single point.

Finally, we provide a set of computer simulations to illustrate
the theoretical results and show the effectiveness of the proposed
method. In order to numerically assess the robustness of the
technique, the model parameters in the simulations are not held
constant but they evolve over time within the 95% confidence
interval provided in Cheng, Savkin and Celler et al. (2008). The
input signal is also distorted in the simulations by applying a
multiplicative perturbation.

The rest of the paper is organized as follows. Section 2 contains
themodel description. Section 3 is devoted to the stability analysis.
In Section 4 we introduce the control scheme and analyze its
performance, including the case of uncertain parameters and
perturbed input signal. Numerical simulations are presented in
Section 5 and Section 6 is devoted to a concluding discussion.

2. Model description

The model proposed in Cheng, Savkin and Celler et al. (2008) to
simulate the HBR is a system of two differential equations,

ẋ1(t) = −a1x1 (t) + a2x2 (t) + a2u2 (t)
ẋ2(t) = −a3x2 (t) + φ (x1 (t)) , (1)

where φ is a nonlinearity defined as

φ (y) =
a4y

1 + exp (− (y − a5))
,

ai > 0, i = 1, . . . , 5, are positive and static model parameters,
x1(t) is proportional to the deviation of the instantaneous HBR
from the nominal rate when the subject is at rest (in particular, the
instantaneous HBR is h(t) = 4x1(t) + 74) and x2(t) represents the
superposition of various internal, and typically slower, processes
that take place in the body during the exercise and affect the HBR.
Changes in types and density of hormones, boosted metabolism
and the increase of body temperature are some examples of such
processes (see Cheng, Savkin and Celler et al. (2008) for additional
details and examples). The input signal u(t) is the treadmill speed,
which serves as an indicator of the exercise intensity. Note that,
according to Eq. (1) and the definition of φ, the signals x1(t), x2(t)
and u(t) are always positive (Cheng, Savkin and Celler et al., 2008).
In the rest of the paper, we denote v(t) = a2u2(t) for simplicity.

Model (1) was calibrated in Cheng, Savkin and Celler et al.
(2008) using several data sets and the parameters ai, i = 1, . . . , 5,
were estimated to be contained in 95% confidence intervals of the
form ai ∈ (âi − δi, âi + δi) where

â1 = 1.84, â2 = 24.32, â3 = 0.0636,

â4 = 0.00321, â5 = 8.32, (2)

and

δ1 = 0.36, δ2 = 4.36, δ3 = 1.95 × 10−2,

δ4 = 6.84 × 10−4, δ5 = 0.44. (3)

3. Stability analysis

It was shown in Cheng, Savkin and Celler et al. (2008) that there
exists a positive definite matrix P such that the matrix inequality

A⊤

1 P + PA1 + PB1B⊤

1 P + C⊤C < 0 (4)

is satisfied with

A1 =


−â1 â2
0 −â3


, B1 =


0
â4


, C = (1 0) , (5)
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